![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-3an | Unicode version |
Description: Define conjunction ('and') of 3 wff.s. Definition *4.34 of [WhiteheadRussell] p. 118. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law anass 401. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
df-3an |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph |
. . 3
![]() ![]() | |
2 | wps |
. . 3
![]() ![]() | |
3 | wch |
. . 3
![]() ![]() | |
4 | 1, 2, 3 | w3a 980 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2 | wa 104 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5, 3 | wa 104 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | wb 105 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: 3anass 984 3anrot 985 3ancoma 987 3anan32 991 3ioran 995 3simpa 996 3pm3.2i 1177 pm3.2an3 1178 3jca 1179 3anbi123i 1190 3imp 1195 3anbi123d 1323 3anim123d 1330 an6 1332 19.26-3an 1494 hb3an 1561 nf3an 1577 nf3and 1580 eeeanv 1949 sb3an 1974 mopick2 2125 r19.26-3 2624 3reeanv 2665 ceqsex3v 2802 ceqsex4v 2803 ceqsex8v 2805 sbc3an 3047 elin3 3350 rexdifpr 3646 raltpg 3671 tpss 3784 dfopg 3802 opeq1 3804 opeq2 3805 opm 4263 otth2 4270 poirr 4338 po3nr 4341 wepo 4390 wetrep 4391 rabxp 4696 brinxp2 4726 brinxp 4727 sotri2 5063 sotri3 5064 f1orn 5510 dff1o6 5819 isosolem 5867 oprabid 5950 caovimo 6112 elovmpo 6117 elovmporab 6118 elovmporab1w 6119 dfxp3 6247 nnaord 6562 fiintim 6985 prmuloc 7626 ltrelxr 8080 rexuz2 9646 ltxr 9841 elixx3g 9967 elioo4g 10000 elioopnf 10033 elioomnf 10034 elicopnf 10035 elxrge0 10044 divelunit 10068 elfz2 10081 elfzuzb 10085 uzsplit 10158 fznn0 10179 elfzmlbp 10198 elfzo2 10216 fzolb2 10221 fzouzsplit 10246 ssfzo12bi 10292 fzind2 10306 dfrp2 10332 abs2dif 11250 sumeq2 11502 divalgb 12066 divgcdz 12108 rplpwr 12164 nnwosdc 12176 cncongr1 12241 pythagtriplem2 12404 pythagtrip 12421 xpscf 12930 issgrpd 12995 issubm2 13045 issubg3 13262 resgrpisgrp 13265 eqgval 13293 eqger 13294 eqgabl 13400 qusecsub 13401 rnglz 13441 rngpropd 13451 ringpropd 13534 ringrghm 13558 zndvds 14137 znleval 14141 znleval2 14142 isbasis3g 14214 lmfval 14360 lmbr 14381 lmbr2 14382 xmeterval 14603 xmeter 14604 cnbl0 14702 cnblcld 14703 limcrcl 14812 gausslemma2dlem1a 15174 bd3an 15322 |
Copyright terms: Public domain | W3C validator |