ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprrd Unicode version

Theorem simprrd 532
Description: Deduction form of simprr 531, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprrd.1  |-  ( ph  ->  ( ps  /\  ( ch  /\  th ) ) )
Assertion
Ref Expression
simprrd  |-  ( ph  ->  th )

Proof of Theorem simprrd
StepHypRef Expression
1 simprrd.1 . . 3  |-  ( ph  ->  ( ps  /\  ( ch  /\  th ) ) )
21simprd 114 . 2  |-  ( ph  ->  ( ch  /\  th ) )
32simprd 114 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  srgrz  12960
  Copyright terms: Public domain W3C validator