ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgrz Unicode version

Theorem srgrz 13861
Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
srgrz  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem srgrz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7  |-  B  =  ( Base `  R
)
2 eqid 2207 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2207 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
4 srgz.t . . . . . . 7  |-  .x.  =  ( .r `  R )
5 srgz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5issrg 13842 . . . . . 6  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y ( +g  `  R
) z ) )  =  ( ( x 
.x.  y ) ( +g  `  R ) ( x  .x.  z
) )  /\  (
( x ( +g  `  R ) y ) 
.x.  z )  =  ( ( x  .x.  z ) ( +g  `  R ) ( y 
.x.  z ) ) )  /\  ( (  .0.  .x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) ) )
76simp3bi 1017 . . . . 5  |-  ( R  e. SRing  ->  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
87r19.21bi 2596 . . . 4  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
98simprrd 532 . . 3  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  (
x  .x.  .0.  )  =  .0.  )
109ralrimiva 2581 . 2  |-  ( R  e. SRing  ->  A. x  e.  B  ( x  .x.  .0.  )  =  .0.  )
11 oveq1 5974 . . . 4  |-  ( x  =  X  ->  (
x  .x.  .0.  )  =  ( X  .x.  .0.  ) )
1211eqeq1d 2216 . . 3  |-  ( x  =  X  ->  (
( x  .x.  .0.  )  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
1312rspcv 2880 . 2  |-  ( X  e.  B  ->  ( A. x  e.  B  ( x  .x.  .0.  )  =  .0.  ->  ( X  .x.  .0.  )  =  .0.  ) )
1410, 13mpan9 281 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   0gc0g 13203   Mndcmnd 13363  CMndccmn 13735  mulGrpcmgp 13797  SRingcsrg 13840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mulr 13038  df-0g 13205  df-srg 13841
This theorem is referenced by:  srgisid  13863  srglmhm  13870
  Copyright terms: Public domain W3C validator