ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgrz Unicode version

Theorem srgrz 13540
Description: The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
srgrz  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem srgrz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgz.b . . . . . . 7  |-  B  =  ( Base `  R
)
2 eqid 2196 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
3 eqid 2196 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
4 srgz.t . . . . . . 7  |-  .x.  =  ( .r `  R )
5 srgz.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
61, 2, 3, 4, 5issrg 13521 . . . . . 6  |-  ( R  e. SRing 
<->  ( R  e. CMnd  /\  (mulGrp `  R )  e. 
Mnd  /\  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  (
( x  .x.  (
y ( +g  `  R
) z ) )  =  ( ( x 
.x.  y ) ( +g  `  R ) ( x  .x.  z
) )  /\  (
( x ( +g  `  R ) y ) 
.x.  z )  =  ( ( x  .x.  z ) ( +g  `  R ) ( y 
.x.  z ) ) )  /\  ( (  .0.  .x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) ) )
76simp3bi 1016 . . . . 5  |-  ( R  e. SRing  ->  A. x  e.  B  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
87r19.21bi 2585 . . . 4  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  ( A. y  e.  B  A. z  e.  B  ( ( x  .x.  ( y ( +g  `  R ) z ) )  =  ( ( x  .x.  y ) ( +g  `  R
) ( x  .x.  z ) )  /\  ( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  R
) ( y  .x.  z ) ) )  /\  ( (  .0. 
.x.  x )  =  .0.  /\  ( x 
.x.  .0.  )  =  .0.  ) ) )
98simprrd 532 . . 3  |-  ( ( R  e. SRing  /\  x  e.  B )  ->  (
x  .x.  .0.  )  =  .0.  )
109ralrimiva 2570 . 2  |-  ( R  e. SRing  ->  A. x  e.  B  ( x  .x.  .0.  )  =  .0.  )
11 oveq1 5929 . . . 4  |-  ( x  =  X  ->  (
x  .x.  .0.  )  =  ( X  .x.  .0.  ) )
1211eqeq1d 2205 . . 3  |-  ( x  =  X  ->  (
( x  .x.  .0.  )  =  .0.  <->  ( X  .x.  .0.  )  =  .0.  ) )
1312rspcv 2864 . 2  |-  ( X  e.  B  ->  ( A. x  e.  B  ( x  .x.  .0.  )  =  .0.  ->  ( X  .x.  .0.  )  =  .0.  ) )
1410, 13mpan9 281 1  |-  ( ( R  e. SRing  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   .rcmulr 12756   0gc0g 12927   Mndcmnd 13057  CMndccmn 13414  mulGrpcmgp 13476  SRingcsrg 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-mulr 12769  df-0g 12929  df-srg 13520
This theorem is referenced by:  srgisid  13542  srglmhm  13549
  Copyright terms: Public domain W3C validator