ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodvs1 Unicode version

Theorem lmodvs1 13625
Description: Scalar product with the ring unity. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs1.v  |-  V  =  ( Base `  W
)
lmodvs1.f  |-  F  =  (Scalar `  W )
lmodvs1.s  |-  .x.  =  ( .s `  W )
lmodvs1.u  |-  .1.  =  ( 1r `  F )
Assertion
Ref Expression
lmodvs1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )

Proof of Theorem lmodvs1
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  W  e.  LMod )
2 lmodvs1.f . . . 4  |-  F  =  (Scalar `  W )
3 eqid 2189 . . . 4  |-  ( Base `  F )  =  (
Base `  F )
4 lmodvs1.u . . . 4  |-  .1.  =  ( 1r `  F )
52, 3, 4lmod1cl 13624 . . 3  |-  ( W  e.  LMod  ->  .1.  e.  ( Base `  F )
)
65adantr 276 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  .1.  e.  ( Base `  F
) )
7 simpr 110 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  V )
8 lmodvs1.v . . . 4  |-  V  =  ( Base `  W
)
9 eqid 2189 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
10 lmodvs1.s . . . 4  |-  .x.  =  ( .s `  W )
11 eqid 2189 . . . 4  |-  ( +g  `  F )  =  ( +g  `  F )
12 eqid 2189 . . . 4  |-  ( .r
`  F )  =  ( .r `  F
)
138, 9, 10, 2, 3, 11, 12, 4lmodlema 13601 . . 3  |-  ( ( W  e.  LMod  /\  (  .1.  e.  ( Base `  F
)  /\  .1.  e.  ( Base `  F )
)  /\  ( X  e.  V  /\  X  e.  V ) )  -> 
( ( (  .1. 
.x.  X )  e.  V  /\  (  .1. 
.x.  ( X ( +g  `  W ) X ) )  =  ( (  .1.  .x.  X ) ( +g  `  W ) (  .1. 
.x.  X ) )  /\  ( (  .1.  ( +g  `  F
)  .1.  )  .x.  X )  =  ( (  .1.  .x.  X
) ( +g  `  W
) (  .1.  .x.  X ) ) )  /\  ( ( (  .1.  ( .r `  F )  .1.  )  .x.  X )  =  (  .1.  .x.  (  .1.  .x. 
X ) )  /\  (  .1.  .x.  X )  =  X ) ) )
1413simprrd 532 . 2  |-  ( ( W  e.  LMod  /\  (  .1.  e.  ( Base `  F
)  /\  .1.  e.  ( Base `  F )
)  /\  ( X  e.  V  /\  X  e.  V ) )  -> 
(  .1.  .x.  X
)  =  X )
151, 6, 6, 7, 7, 14syl122anc 1258 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (  .1.  .x.  X )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5232  (class class class)co 5892   Basecbs 12507   +g cplusg 12582   .rcmulr 12583  Scalarcsca 12585   .scvsca 12586   1rcur 13306   LModclmod 13596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-pre-ltirr 7948  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pnf 8019  df-mnf 8020  df-ltxr 8022  df-inn 8945  df-2 9003  df-3 9004  df-4 9005  df-5 9006  df-6 9007  df-ndx 12510  df-slot 12511  df-base 12513  df-sets 12514  df-plusg 12595  df-mulr 12596  df-sca 12598  df-vsca 12599  df-0g 12756  df-mgm 12825  df-sgrp 12858  df-mnd 12871  df-mgp 13268  df-ur 13307  df-ring 13345  df-lmod 13598
This theorem is referenced by:  lmodfopne  13635  lmodvneg1  13639  lmodcom  13642  lssvacl  13674  islss3  13688  lspsn  13725
  Copyright terms: Public domain W3C validator