ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simprrd GIF version

Theorem simprrd 532
Description: Deduction form of simprr 531, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simprrd.1 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
Assertion
Ref Expression
simprrd (𝜑𝜃)

Proof of Theorem simprrd
StepHypRef Expression
1 simprrd.1 . . 3 (𝜑 → (𝜓 ∧ (𝜒𝜃)))
21simprd 114 . 2 (𝜑 → (𝜒𝜃))
32simprd 114 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107
This theorem is referenced by:  srgrz  12960
  Copyright terms: Public domain W3C validator