Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > stoic4a | Unicode version |
Description: Stoic logic Thema 4
version a.
Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)." We use to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1409 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic4a.1 | |
stoic4a.2 |
Ref | Expression |
---|---|
stoic4a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic4a.1 | . . 3 | |
2 | 1 | 3adant3 1001 | . 2 |
3 | simp1 981 | . 2 | |
4 | simp3 983 | . 2 | |
5 | stoic4a.2 | . 2 | |
6 | 2, 3, 4, 5 | syl3anc 1216 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |