ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl312anc Unicode version

Theorem syl312anc 1249
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
sylXanc.5  |-  ( ph  ->  et )
sylXanc.6  |-  ( ph  ->  ze )
syl312anc.7  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ta  /\  ( et  /\  ze ) )  ->  si )
Assertion
Ref Expression
syl312anc  |-  ( ph  ->  si )

Proof of Theorem syl312anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . 2  |-  ( ph  ->  ch )
3 sylXanc.3 . 2  |-  ( ph  ->  th )
4 sylXanc.4 . 2  |-  ( ph  ->  ta )
5 sylXanc.5 . . 3  |-  ( ph  ->  et )
6 sylXanc.6 . . 3  |-  ( ph  ->  ze )
75, 6jca 304 . 2  |-  ( ph  ->  ( et  /\  ze ) )
8 syl312anc.7 . 2  |-  ( ( ( ps  /\  ch  /\ 
th )  /\  ta  /\  ( et  /\  ze ) )  ->  si )
91, 2, 3, 4, 7, 8syl311anc 1242 1  |-  ( ph  ->  si )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  pythagtriplem19  12210
  Copyright terms: Public domain W3C validator