HomeHome Intuitionistic Logic Explorer
Theorem List (p. 13 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1201-1300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3jca 1201 Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ps  /\  ch  /\  th ) )
 
Theorem3jcad 1202 Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  th ) )   &    |-  ( ph  ->  ( ps  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  th 
 /\  ta ) ) )
 
Theoremmpbir3an 1203 Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |- 
 ch   &    |- 
 th   &    |-  ( ph  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ph
 
Theoremmpbir3and 1204 Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th 
 /\  ta ) ) )   =>    |-  ( ph  ->  ps )
 
Theoremsyl3anbrc 1205 Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ta  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  ta )
 
Theoremsyl21anbrc 1206 Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ta  <->  ( ( ps 
 /\  ch )  /\  th ) )   =>    |-  ( ph  ->  ta )
 
Theorem3imp3i2an 1207 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   &    |-  (
 ( ph  /\  ch )  ->  ta )   &    |-  ( ( th  /\ 
 ta )  ->  et )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  et )
 
Theorem3anim123i 1208 Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ta  ->  et )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ( ps  /\  th  /\  et ) )
 
Theorem3anim1i 1209 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  ch  /\  th )  ->  ( ps  /\ 
 ch  /\  th )
 )
 
Theorem3anim2i 1210 Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ph  /\  th )  ->  ( ch  /\  ps 
 /\  th ) )
 
Theorem3anim3i 1211 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  th  /\  ph )  ->  ( ch 
 /\  th  /\  ps )
 )
 
Theorem3anbi123i 1212 Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  <->  ( ps  /\  th 
 /\  et ) )
 
Theorem3orbi123i 1213 Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  ( ( ph  \/  ch 
 \/  ta )  <->  ( ps  \/  th 
 \/  et ) )
 
Theorem3anbi1i 1214 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch  /\ 
 th )  <->  ( ps  /\  ch 
 /\  th ) )
 
Theorem3anbi2i 1215 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  ph 
 /\  th )  <->  ( ch  /\  ps 
 /\  th ) )
 
Theorem3anbi3i 1216 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  th 
 /\  ph )  <->  ( ch  /\  th 
 /\  ps ) )
 
Theorem3imp 1217 Importation inference. (Contributed by NM, 8-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorem3impa 1218 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremex3 1219 Apply ex 115 to a hypothesis with a 3-right-nested conjunction antecedent, with the antecedent of the assertion being a triple conjunction rather than a 2-right-nested conjunction. (Contributed by Alan Sare, 22-Apr-2018.)
 |-  ( ( ( (
 ph  /\  ps )  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th  ->  ta ) )
 
Theorem3imp31 1220 The importation inference 3imp 1217 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ch 
 /\  ps  /\  ph )  ->  th )
 
Theorem3imp231 1221 Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ps 
 /\  ch  /\  ph )  ->  th )
 
Theorem3imp21 1222 The importation inference 3imp 1217 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1231 by Wolf Lammen, 23-Jun-2022.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ps 
 /\  ph  /\  ch )  ->  th )
 
Theorem3impb 1223 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impia 1224 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impib 1225 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorem3exp 1226 Exportation inference. (Contributed by NM, 30-May-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )
 
Theorem3expa 1227 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ph  /\  ps )  /\  ch )  ->  th )
 
Theorem3expb 1228 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  th )
 
Theorem3expia 1229 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  ( ch  ->  th )
 )
 
Theorem3expib 1230 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )
 
Theorem3com12 1231 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ph  /\  ch )  ->  th )
 
Theorem3com13 1232 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ch  /\  ps  /\  ph )  ->  th )
 
Theorem3com23 1233 Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ch  /\  ps )  ->  th )
 
Theorem3coml 1234 Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ch  /\  ph )  ->  th )
 
Theorem3comr 1235 Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ch  /\  ph  /\  ps )  ->  th )
 
Theorem3adant3r1 1236 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ta 
 /\  ps  /\  ch )
 )  ->  th )
 
Theorem3adant3r2 1237 Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ta  /\  ch )
 )  ->  th )
 
Theorem3adant3r3 1238 Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch  /\  ta )
 )  ->  th )
 
Theoremad4ant123 1239 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ph  /\ 
 ps )  /\  ch )  /\  ta )  ->  th )
 
Theoremad4ant124 1240 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ph  /\ 
 ps )  /\  ta )  /\  ch )  ->  th )
 
Theoremad4ant134 1241 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ph  /\ 
 ta )  /\  ps )  /\  ch )  ->  th )
 
Theoremad4ant234 1242 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ta 
 /\  ph )  /\  ps )  /\  ch )  ->  th )
 
Theorem3an1rs 1243 Swap conjuncts. (Contributed by NM, 16-Dec-2007.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ph  /\  ps  /\ 
 th )  /\  ch )  ->  ta )
 
Theorem3imp1 1244 Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( (
 ph  /\  ps  /\  ch )  /\  th )  ->  ta )
 
Theorem3impd 1245 Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch  /\ 
 th )  ->  ta )
 )
 
Theorem3imp2 1246 Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( ph  /\  ( ps  /\  ch  /\ 
 th ) )  ->  ta )
 
Theorem3exp1 1247 Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
 
Theorem3expd 1248 Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ph  ->  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theorem3exp2 1249 Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
 
Theoremexp5o 1250 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  (
 ( th  /\  ta )  ->  et ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )
 
Theoremexp516 1251 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ( ( ph  /\  ( ps  /\  ch  /\ 
 th ) )  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )
 
Theoremexp520 1252 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  ( th  /\  ta ) )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )
 
Theorem3anassrs 1253 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ( ( ph  /\ 
 ps )  /\  ch )  /\  th )  ->  ta )
 
Theorem3adant1l 1254 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ta  /\  ph )  /\  ps  /\  ch )  ->  th )
 
Theorem3adant1r 1255 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )
 
Theorem3adant2l 1256 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ta 
 /\  ps )  /\  ch )  ->  th )
 
Theorem3adant2r 1257 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ta )  /\  ch )  ->  th )
 
Theorem3adant3l 1258 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ( ta  /\  ch )
 )  ->  th )
 
Theorem3adant3r 1259 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ( ch  /\  ta )
 )  ->  th )
 
Theoremad5ant245 1260 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ( ta  /\  ph )  /\  et )  /\  ps )  /\  ch )  ->  th )
 
Theoremad5ant234 1261 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ( ta  /\  ph )  /\  ps )  /\  ch )  /\  et )  ->  th )
 
Theoremad5ant235 1262 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( ( ta  /\  ph )  /\  ps )  /\  et )  /\  ch )  ->  th )
 
Theoremad5ant123 1263 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( (
 ph  /\  ps )  /\  ch )  /\  ta )  /\  et )  ->  th )
 
Theoremad5ant124 1264 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( (
 ph  /\  ps )  /\  ta )  /\  ch )  /\  et )  ->  th )
 
Theoremad5ant125 1265 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( (
 ph  /\  ps )  /\  ta )  /\  et )  /\  ch )  ->  th )
 
Theoremad5ant134 1266 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( (
 ph  /\  ta )  /\  ps )  /\  ch )  /\  et )  ->  th )
 
Theoremad5ant135 1267 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( (
 ph  /\  ta )  /\  ps )  /\  et )  /\  ch )  ->  th )
 
Theoremad5ant145 1268 Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ( (
 ph  /\  ta )  /\  et )  /\  ps )  /\  ch )  ->  th )
 
Theoremsyl12anc 1269 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ( ps 
 /\  ( ch  /\  th ) )  ->  ta )   =>    |-  ( ph  ->  ta )
 
Theoremsyl21anc 1270 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ph  ->  ta )
 
Theoremsyl3anc 1271 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ph  ->  ta )
 
Theoremsyl22anc 1272 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta ) )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl13anc 1273 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta ) )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl31anc 1274 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl112anc 1275 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ps 
 /\  ch  /\  ( th  /\ 
 ta ) )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl121anc 1276 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ps 
 /\  ( ch  /\  th )  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl211anc 1277 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ps  /\  ch )  /\  th  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl23anc 1278 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl32anc 1279 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl122anc 1280 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ps 
 /\  ( ch  /\  th )  /\  ( ta 
 /\  et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl212anc 1281 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch )  /\  th  /\  ( ta 
 /\  et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl221anc 1282 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl113anc 1283 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ps 
 /\  ch  /\  ( th  /\ 
 ta  /\  et )
 )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl131anc 1284 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta )  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl311anc 1285 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl33anc 1286 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl222anc 1287 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  ( et  /\  ze ) )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl123anc 1288 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ps 
 /\  ( ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl132anc 1289 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta )  /\  ( et  /\  ze ) ) 
 ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl213anc 1290 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch )  /\  th  /\  ( ta 
 /\  et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl231anc 1291 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et )  /\  ze )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl312anc 1292 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta  /\  ( et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl321anc 1293 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et )  /\  ze )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl133anc 1294 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta )  /\  ( et  /\  ze  /\  si ) )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl313anc 1295 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta  /\  ( et  /\  ze  /\  si ) )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl331anc 1296 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )  /\  si )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl223anc 1297 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  ( et  /\  ze 
 /\  si ) )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl232anc 1298 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et )  /\  ( ze  /\  si ) ) 
 ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl322anc 1299 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et )  /\  ( ze  /\  si ) ) 
 ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl233anc 1300 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ph  ->  rh )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et )  /\  ( ze  /\  si  /\  rh )
 )  ->  mu )   =>    |-  ( ph  ->  mu )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >