ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem19 Unicode version

Theorem pythagtriplem19 12649
Description: Lemma for pythagtrip 12650. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem19  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Distinct variable groups:    A, m, n, k    B, m, n, k    C, m, n, k

Proof of Theorem pythagtriplem19
StepHypRef Expression
1 gcdnncl 12332 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
213adant3 1020 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  NN )
323ad2ant1 1021 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  gcd  B
)  e.  NN )
4 nnz 9398 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  ZZ )
5 nnz 9398 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  ZZ )
6 gcddvds 12328 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
74, 5, 6syl2an 289 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
873adant3 1020 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
98simpld 112 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  A )
102nnzd 9501 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  ZZ )
112nnne0d 9088 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  =/=  0 )
1243ad2ant1 1021 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
13 dvdsval2 12145 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
1410, 11, 12, 13syl3anc 1250 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
159, 14mpbid 147 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
16 nnre 9050 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
17163ad2ant1 1021 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
182nnred 9056 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  RR )
19 nngt0 9068 . . . . . . . . 9  |-  ( A  e.  NN  ->  0  <  A )
20193ad2ant1 1021 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  A )
212nngt0d 9087 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  gcd  B
) )
2217, 18, 20, 21divgt0d 9015 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  /  ( A  gcd  B ) ) )
23 elnnz 9389 . . . . . . 7  |-  ( ( A  /  ( A  gcd  B ) )  e.  NN  <->  ( ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( A  /  ( A  gcd  B ) ) ) )
2415, 22, 23sylanbrc 417 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
25243ad2ant1 1021 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  /  ( A  gcd  B ) )  e.  NN )
268simprd 114 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  B )
2753ad2ant2 1022 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
28 dvdsval2 12145 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
2910, 11, 27, 28syl3anc 1250 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3026, 29mpbid 147 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
31 nnre 9050 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
32313ad2ant2 1022 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
33 nngt0 9068 . . . . . . . . 9  |-  ( B  e.  NN  ->  0  <  B )
34333ad2ant2 1022 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
3532, 18, 34, 21divgt0d 9015 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( B  /  ( A  gcd  B ) ) )
36 elnnz 9389 . . . . . . 7  |-  ( ( B  /  ( A  gcd  B ) )  e.  NN  <->  ( ( B  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( B  /  ( A  gcd  B ) ) ) )
3730, 35, 36sylanbrc 417 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
38373ad2ant1 1021 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( B  /  ( A  gcd  B ) )  e.  NN )
39 dvdssq 12396 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
4010, 12, 39syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
41 dvdssq 12396 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4210, 27, 41syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4340, 42anbi12d 473 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( (
( A  gcd  B
) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) ) )
448, 43mpbid 147 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B ) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) )
452nnsqcld 10846 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  NN )
4645nnzd 9501 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  ZZ )
47 nnsqcl 10761 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
48473ad2ant1 1021 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  NN )
4948nnzd 9501 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
50 nnsqcl 10761 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
51503ad2ant2 1022 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  NN )
5251nnzd 9501 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  ZZ )
53 dvds2add 12180 . . . . . . . . . . . . 13  |-  ( ( ( ( A  gcd  B ) ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
5446, 49, 52, 53syl3anc 1250 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
5544, 54mpd 13 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
5655adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
57 simpr 110 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )
5856, 57breqtrd 4073 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) )
59 nnz 9398 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  ZZ )
60593ad2ant3 1023 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
61 dvdssq 12396 . . . . . . . . . . 11  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  gcd  B )  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6210, 60, 61syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6362adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( ( A  gcd  B ) ^ 2 ) 
||  ( C ^
2 ) ) )
6458, 63mpbird 167 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  ||  C )
65 dvdsval2 12145 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
6610, 11, 60, 65syl3anc 1250 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
6766adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
6864, 67mpbid 147 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  ZZ )
69 nnre 9050 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
70693ad2ant3 1023 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
71 nngt0 9068 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
72713ad2ant3 1023 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
7370, 18, 72, 21divgt0d 9015 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
7473adantr 276 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
75 elnnz 9389 . . . . . . 7  |-  ( ( C  /  ( A  gcd  B ) )  e.  NN  <->  ( ( C  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( C  /  ( A  gcd  B ) ) ) )
7668, 74, 75sylanbrc 417 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  NN )
77763adant3 1020 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( C  /  ( A  gcd  B ) )  e.  NN )
7848nncnd 9057 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
7951nncnd 9057 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
8045nncnd 9057 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  CC )
8145nnap0d 9089 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) #  0 )
8278, 79, 80, 81divdirapd 8909 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
83823ad2ant1 1021 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^ 2 ) )  +  ( ( B ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) ) )
84 nncn 9051 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  CC )
85843ad2ant3 1023 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  CC )
862nncnd 9057 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  CC )
872nnap0d 9089 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B ) #  0 )
8885, 86, 87sqdivapd 10838 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( C ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
89883ad2ant1 1021 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
90 oveq1 5958 . . . . . . . 8  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( C ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) )
91903ad2ant2 1022 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
9289, 91eqtr4d 2242 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^
2 ) ) )
93 nncn 9051 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
94933ad2ant1 1021 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
9594, 86, 87sqdivapd 10838 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
96 nncn 9051 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  CC )
97963ad2ant2 1022 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
9897, 86, 87sqdivapd 10838 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
9995, 98oveq12d 5969 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  / 
( A  gcd  B
) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
100993ad2ant1 1021 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
10183, 92, 1003eqtr4rd 2250 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 ) )
102 gcddiv 12384 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
10312, 27, 2, 8, 102syl31anc 1253 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
10486, 87dividapd 8866 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
105103, 104eqtr3d 2241 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
1061053ad2ant1 1021 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
107 simp3 1002 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( A  /  ( A  gcd  B ) ) )
108 pythagtriplem18 12648 . . . . 5  |-  ( ( ( ( A  / 
( A  gcd  B
) )  e.  NN  /\  ( B  /  ( A  gcd  B ) )  e.  NN  /\  ( C  /  ( A  gcd  B ) )  e.  NN )  /\  ( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  / 
( A  gcd  B
) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 )  /\  ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
10925, 38, 77, 101, 106, 107, 108syl312anc 1271 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  (
( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11094, 86, 87divcanap2d 8872 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  A )
111110eqcomd 2212 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) ) )
11297, 86, 87divcanap2d 8872 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  B )
113112eqcomd 2212 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) ) )
11485, 86, 87divcanap2d 8872 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  C )
115114eqcomd 2212 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )
116111, 113, 1153jca 1180 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
1171163ad2ant1 1021 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  =  ( ( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
118 oveq2 5959 . . . . . . . . . 10  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
119118eqeq2d 2218 . . . . . . . . 9  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
1201193ad2ant1 1021 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
121 oveq2 5959 . . . . . . . . . 10  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) )
122121eqeq2d 2218 . . . . . . . . 9  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
1231223ad2ant2 1022 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
124 oveq2 5959 . . . . . . . . . 10  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
125124eqeq2d 2218 . . . . . . . . 9  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
1261253ad2ant3 1023 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
127120, 123, 1263anbi123d 1325 . . . . . . 7  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
128117, 127syl5ibcom 155 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
129128reximdv 2608 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
130129reximdv 2608 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
131109, 130mpd 13 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
132 oveq1 5958 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
133132eqeq2d 2218 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  <->  A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
134 oveq1 5958 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) )
135134eqeq2d 2218 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  <->  B  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
136 oveq1 5958 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
137136eqeq2d 2218 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  <->  C  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
138133, 135, 1373anbi123d 1325 . . . . 5  |-  ( k  =  ( A  gcd  B )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
1391382rexbidv 2532 . . . 4  |-  ( k  =  ( A  gcd  B )  ->  ( E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
140139rspcev 2878 . . 3  |-  ( ( ( A  gcd  B
)  e.  NN  /\  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
1413, 131, 140syl2anc 411 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
142 rexcom 2671 . . 3  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
143 rexcom 2671 . . . 4  |-  ( E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
144143rexbii 2514 . . 3  |-  ( E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
145142, 144bitri 184 . 2  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
146141, 145sylib 122 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   E.wrex 2486   class class class wbr 4047  (class class class)co 5951   CCcc 7930   RRcr 7931   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    < clt 8114    - cmin 8250    / cdiv 8752   NNcn 9043   2c2 9094   ZZcz 9379   ^cexp 10690    || cdvds 12142    gcd cgcd 12318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319  df-prm 12474
This theorem is referenced by:  pythagtrip  12650
  Copyright terms: Public domain W3C validator