ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtriplem19 Unicode version

Theorem pythagtriplem19 12210
Description: Lemma for pythagtrip 12211. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem19  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Distinct variable groups:    A, m, n, k    B, m, n, k    C, m, n, k

Proof of Theorem pythagtriplem19
StepHypRef Expression
1 gcdnncl 11896 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  gcd  B
)  e.  NN )
213adant3 1007 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  NN )
323ad2ant1 1008 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  gcd  B
)  e.  NN )
4 nnz 9206 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  e.  ZZ )
5 nnz 9206 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  B  e.  ZZ )
6 gcddvds 11892 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
74, 5, 6syl2an 287 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
873adant3 1007 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  /\  ( A  gcd  B ) 
||  B ) )
98simpld 111 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  A )
102nnzd 9308 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  ZZ )
112nnne0d 8898 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  =/=  0 )
1243ad2ant1 1008 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  ZZ )
13 dvdsval2 11726 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  A  e.  ZZ )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
1410, 11, 12, 13syl3anc 1228 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( A  /  ( A  gcd  B ) )  e.  ZZ ) )
159, 14mpbid 146 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  ZZ )
16 nnre 8860 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  e.  RR )
17163ad2ant1 1008 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
182nnred 8866 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  RR )
19 nngt0 8878 . . . . . . . . 9  |-  ( A  e.  NN  ->  0  <  A )
20193ad2ant1 1008 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  A )
212nngt0d 8897 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  gcd  B
) )
2217, 18, 20, 21divgt0d 8826 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( A  /  ( A  gcd  B ) ) )
23 elnnz 9197 . . . . . . 7  |-  ( ( A  /  ( A  gcd  B ) )  e.  NN  <->  ( ( A  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( A  /  ( A  gcd  B ) ) ) )
2415, 22, 23sylanbrc 414 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  /  ( A  gcd  B ) )  e.  NN )
25243ad2ant1 1008 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  /  ( A  gcd  B ) )  e.  NN )
268simprd 113 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  ||  B )
2753ad2ant2 1009 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  ZZ )
28 dvdsval2 11726 . . . . . . . . 9  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  B  e.  ZZ )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
2910, 11, 27, 28syl3anc 1228 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( B  /  ( A  gcd  B ) )  e.  ZZ ) )
3026, 29mpbid 146 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  ZZ )
31 nnre 8860 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  RR )
32313ad2ant2 1009 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
33 nngt0 8878 . . . . . . . . 9  |-  ( B  e.  NN  ->  0  <  B )
34333ad2ant2 1009 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
3532, 18, 34, 21divgt0d 8826 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( B  /  ( A  gcd  B ) ) )
36 elnnz 9197 . . . . . . 7  |-  ( ( B  /  ( A  gcd  B ) )  e.  NN  <->  ( ( B  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( B  /  ( A  gcd  B ) ) ) )
3730, 35, 36sylanbrc 414 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B  /  ( A  gcd  B ) )  e.  NN )
38373ad2ant1 1008 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( B  /  ( A  gcd  B ) )  e.  NN )
39 dvdssq 11960 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
4010, 12, 39syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  A  <->  ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 ) ) )
41 dvdssq 11960 . . . . . . . . . . . . . . 15  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4210, 27, 41syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  B  <->  ( ( A  gcd  B ) ^
2 )  ||  ( B ^ 2 ) ) )
4340, 42anbi12d 465 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B )  <->  ( (
( A  gcd  B
) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) ) )
448, 43mpbid 146 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  gcd  B ) ^ 2 ) 
||  ( A ^
2 )  /\  (
( A  gcd  B
) ^ 2 ) 
||  ( B ^
2 ) ) )
452nnsqcld 10605 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  NN )
4645nnzd 9308 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  ZZ )
47 nnsqcl 10520 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  NN )
48473ad2ant1 1008 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  NN )
4948nnzd 9308 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  ZZ )
50 nnsqcl 10520 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  NN )
51503ad2ant2 1009 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  NN )
5251nnzd 9308 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  ZZ )
53 dvds2add 11761 . . . . . . . . . . . . 13  |-  ( ( ( ( A  gcd  B ) ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
5446, 49, 52, 53syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( ( A  gcd  B ) ^
2 )  ||  ( A ^ 2 )  /\  ( ( A  gcd  B ) ^ 2 ) 
||  ( B ^
2 ) )  -> 
( ( A  gcd  B ) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) ) )
5544, 54mpd 13 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
5655adantr 274 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) )
57 simpr 109 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )
5856, 57breqtrd 4007 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) )
59 nnz 9206 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  ZZ )
60593ad2ant3 1010 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  ZZ )
61 dvdssq 11960 . . . . . . . . . . 11  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  gcd  B )  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6210, 60, 61syl2anc 409 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( ( A  gcd  B ) ^
2 )  ||  ( C ^ 2 ) ) )
6362adantr 274 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( ( A  gcd  B ) ^ 2 ) 
||  ( C ^
2 ) ) )
6458, 63mpbird 166 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( A  gcd  B )  ||  C )
65 dvdsval2 11726 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  C  e.  ZZ )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
6610, 11, 60, 65syl3anc 1228 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  ||  C  <->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
6766adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( ( A  gcd  B )  ||  C 
<->  ( C  /  ( A  gcd  B ) )  e.  ZZ ) )
6864, 67mpbid 146 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  ZZ )
69 nnre 8860 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  RR )
70693ad2ant3 1010 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
71 nngt0 8878 . . . . . . . . . 10  |-  ( C  e.  NN  ->  0  <  C )
72713ad2ant3 1010 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
7370, 18, 72, 21divgt0d 8826 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
7473adantr 274 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  /  ( A  gcd  B ) ) )
75 elnnz 9197 . . . . . . 7  |-  ( ( C  /  ( A  gcd  B ) )  e.  NN  <->  ( ( C  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( C  /  ( A  gcd  B ) ) ) )
7668, 74, 75sylanbrc 414 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  ( C  / 
( A  gcd  B
) )  e.  NN )
77763adant3 1007 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( C  /  ( A  gcd  B ) )  e.  NN )
7848nncnd 8867 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
7951nncnd 8867 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
8045nncnd 8867 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 )  e.  CC )
8145nnap0d 8899 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
) ^ 2 ) #  0 )
8278, 79, 80, 81divdirapd 8721 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
83823ad2ant1 1008 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^ 2 ) )  +  ( ( B ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) ) )
84 nncn 8861 . . . . . . . . . 10  |-  ( C  e.  NN  ->  C  e.  CC )
85843ad2ant3 1010 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  e.  CC )
862nncnd 8867 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B )  e.  CC )
872nnap0d 8899 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  gcd  B ) #  0 )
8885, 86, 87sqdivapd 10597 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( C ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
89883ad2ant1 1008 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
90 oveq1 5848 . . . . . . . 8  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^ 2 ) )  =  ( ( C ^ 2 )  / 
( ( A  gcd  B ) ^ 2 ) ) )
91903ad2ant2 1009 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  (
( A  gcd  B
) ^ 2 ) )  =  ( ( C ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) ) )
9289, 91eqtr4d 2201 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( C  / 
( A  gcd  B
) ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  /  ( ( A  gcd  B ) ^
2 ) ) )
93 nncn 8861 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
94933ad2ant1 1008 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  CC )
9594, 86, 87sqdivapd 10597 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( A ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
96 nncn 8861 . . . . . . . . . 10  |-  ( B  e.  NN  ->  B  e.  CC )
97963ad2ant2 1009 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  e.  CC )
9897, 86, 87sqdivapd 10597 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( B  /  ( A  gcd  B ) ) ^ 2 )  =  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) )
9995, 98oveq12d 5859 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A  / 
( A  gcd  B
) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
100993ad2ant1 1008 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( ( A  gcd  B ) ^
2 ) )  +  ( ( B ^
2 )  /  (
( A  gcd  B
) ^ 2 ) ) ) )
10183, 92, 1003eqtr4rd 2209 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  /  ( A  gcd  B ) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 ) )
102 gcddiv 11948 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( A  gcd  B )  e.  NN )  /\  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )  ->  ( ( A  gcd  B )  / 
( A  gcd  B
) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) ) )
10312, 27, 2, 8, 102syl31anc 1231 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) ) )
10486, 87dividapd 8678 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  /  ( A  gcd  B ) )  =  1 )
105103, 104eqtr3d 2200 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  /  ( A  gcd  B ) )  gcd  ( B  / 
( A  gcd  B
) ) )  =  1 )
1061053ad2ant1 1008 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( A  / 
( A  gcd  B
) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1 )
107 simp3 989 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  -.  2  ||  ( A  /  ( A  gcd  B ) ) )
108 pythagtriplem18 12209 . . . . 5  |-  ( ( ( ( A  / 
( A  gcd  B
) )  e.  NN  /\  ( B  /  ( A  gcd  B ) )  e.  NN  /\  ( C  /  ( A  gcd  B ) )  e.  NN )  /\  ( ( ( A  /  ( A  gcd  B ) ) ^ 2 )  +  ( ( B  / 
( A  gcd  B
) ) ^ 2 ) )  =  ( ( C  /  ( A  gcd  B ) ) ^ 2 )  /\  ( ( ( A  /  ( A  gcd  B ) )  gcd  ( B  /  ( A  gcd  B ) ) )  =  1  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
10925, 38, 77, 101, 106, 107, 108syl312anc 1249 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  (
( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) )
11094, 86, 87divcanap2d 8684 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  A )
111110eqcomd 2171 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) ) )
11297, 86, 87divcanap2d 8684 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  B )
113112eqcomd 2171 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) ) )
11485, 86, 87divcanap2d 8684 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  C )
115114eqcomd 2171 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )
116111, 113, 1153jca 1167 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
1171163ad2ant1 1008 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( A  =  ( ( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) ) )
118 oveq2 5849 . . . . . . . . . 10  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( A  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
119118eqeq2d 2177 . . . . . . . . 9  |-  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
1201193ad2ant1 1008 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  <->  A  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
121 oveq2 5849 . . . . . . . . . 10  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  (
( A  gcd  B
)  x.  ( B  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) )
122121eqeq2d 2177 . . . . . . . . 9  |-  ( ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n
) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
1231223ad2ant2 1009 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  <->  B  =  (
( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
124 oveq2 5849 . . . . . . . . . 10  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  (
( A  gcd  B
)  x.  ( C  /  ( A  gcd  B ) ) )  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
125124eqeq2d 2177 . . . . . . . . 9  |-  ( ( C  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
1261253ad2ant3 1010 . . . . . . . 8  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) )  <->  C  =  (
( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
127120, 123, 1263anbi123d 1302 . . . . . . 7  |-  ( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  /  ( A  gcd  B ) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( ( A  =  ( ( A  gcd  B )  x.  ( A  /  ( A  gcd  B ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( B  /  ( A  gcd  B ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( C  /  ( A  gcd  B ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
128117, 127syl5ibcom 154 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
129128reximdv 2566 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
130129reximdv 2566 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  -> 
( E. n  e.  NN  E. m  e.  NN  ( ( A  /  ( A  gcd  B ) )  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  ( B  / 
( A  gcd  B
) )  =  ( 2  x.  ( m  x.  n ) )  /\  ( C  / 
( A  gcd  B
) )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
131109, 130mpd 13 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
132 oveq1 5848 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) )
133132eqeq2d 2177 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  <->  A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )
134 oveq1 5848 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) ) )
135134eqeq2d 2177 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  <->  B  =  ( ( A  gcd  B )  x.  ( 2  x.  ( m  x.  n ) ) ) ) )
136 oveq1 5848 . . . . . . 7  |-  ( k  =  ( A  gcd  B )  ->  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )
137136eqeq2d 2177 . . . . . 6  |-  ( k  =  ( A  gcd  B )  ->  ( C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) )  <->  C  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )
138133, 135, 1373anbi123d 1302 . . . . 5  |-  ( k  =  ( A  gcd  B )  ->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
1391382rexbidv 2490 . . . 4  |-  ( k  =  ( A  gcd  B )  ->  ( E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( ( A  gcd  B
)  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B
)  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
140139rspcev 2829 . . 3  |-  ( ( ( A  gcd  B
)  e.  NN  /\  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( ( A  gcd  B )  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( ( A  gcd  B )  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
1413, 131, 140syl2anc 409 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
142 rexcom 2629 . . 3  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
143 rexcom 2629 . . . 4  |-  ( E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
144143rexbii 2472 . . 3  |-  ( E. n  e.  NN  E. k  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
145142, 144bitri 183 . 2  |-  ( E. k  e.  NN  E. n  e.  NN  E. m  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
146141, 145sylib 121 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2335   E.wrex 2444   class class class wbr 3981  (class class class)co 5841   CCcc 7747   RRcr 7748   0cc0 7749   1c1 7750    + caddc 7752    x. cmul 7754    < clt 7929    - cmin 8065    / cdiv 8564   NNcn 8853   2c2 8904   ZZcz 9187   ^cexp 10450    || cdvds 11723    gcd cgcd 11871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867  ax-arch 7868  ax-caucvg 7869
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-1o 6380  df-2o 6381  df-er 6497  df-en 6703  df-sup 6945  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-3 8913  df-4 8914  df-n0 9111  df-z 9188  df-uz 9463  df-q 9554  df-rp 9586  df-fz 9941  df-fzo 10074  df-fl 10201  df-mod 10254  df-seqfrec 10377  df-exp 10451  df-cj 10780  df-re 10781  df-im 10782  df-rsqrt 10936  df-abs 10937  df-dvds 11724  df-gcd 11872  df-prm 12036
This theorem is referenced by:  pythagtrip  12211
  Copyright terms: Public domain W3C validator