ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truanfal Unicode version

Theorem truanfal 1397
Description: A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truanfal  |-  ( ( T.  /\ F.  )  <-> F.  )

Proof of Theorem truanfal
StepHypRef Expression
1 truan 1365 1  |-  ( ( T.  /\ F.  )  <-> F.  )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   T. wtru 1349   F. wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator