ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falantru Unicode version

Theorem falantru 1398
Description: A  /\ identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
Assertion
Ref Expression
falantru  |-  ( ( F.  /\ T.  )  <-> F.  )

Proof of Theorem falantru
StepHypRef Expression
1 simpl 108 . 2  |-  ( ( F.  /\ T.  )  -> F.  )
2 falim 1362 . 2  |-  ( F. 
->  ( F.  /\ T.  ) )
31, 2impbii 125 1  |-  ( ( F.  /\ T.  )  <-> F.  )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   T. wtru 1349   F. wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  trubifal  1411  falxortru  1416  falxorfal  1417
  Copyright terms: Public domain W3C validator