ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truanfal GIF version

Theorem truanfal 1397
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truanfal ((⊤ ∧ ⊥) ↔ ⊥)

Proof of Theorem truanfal
StepHypRef Expression
1 truan 1365 1 ((⊤ ∧ ⊥) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wtru 1349  wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator