ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trujust Unicode version

Theorem trujust 1350
Description: Soundness justification theorem for df-tru 1351. (Contributed by Mario Carneiro, 17-Nov-2013.) (Revised by NM, 11-Jul-2019.)
Assertion
Ref Expression
trujust  |-  ( ( A. x  x  =  x  ->  A. x  x  =  x )  <->  ( A. y  y  =  y  ->  A. y 
y  =  y ) )

Proof of Theorem trujust
StepHypRef Expression
1 id 19 . 2  |-  ( A. x  x  =  x  ->  A. x  x  =  x )
2 id 19 . 2  |-  ( A. y  y  =  y  ->  A. y  y  =  y )
31, 22th 173 1  |-  ( ( A. x  x  =  x  ->  A. x  x  =  x )  <->  ( A. y  y  =  y  ->  A. y 
y  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator