ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th Unicode version

Theorem 2th 174
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1  |-  ph
2th.2  |-  ps
Assertion
Ref Expression
2th  |-  ( ph  <->  ps )

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 2th.1 . . 3  |-  ph
43a1i 9 . 2  |-  ( ps 
->  ph )
52, 4impbii 126 1  |-  ( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  trujust  1366  dftru2  1372  bitru  1376  vjust  2764  pwv  3839  int0  3889  0iin  3976  snnex  4484  ruv  4587  fo1st  6224  fo2nd  6225  eqer  6633  ener  6847  rexfiuz  11171  bdth  15561
  Copyright terms: Public domain W3C validator