ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th Unicode version

Theorem 2th 174
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1  |-  ph
2th.2  |-  ps
Assertion
Ref Expression
2th  |-  ( ph  <->  ps )

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 2th.1 . . 3  |-  ph
43a1i 9 . 2  |-  ( ps 
->  ph )
52, 4impbii 126 1  |-  ( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  trujust  1397  dftru2  1403  bitru  1407  vjust  2800  pwv  3887  int0  3937  0iin  4024  snnex  4539  ruv  4642  fo1st  6303  fo2nd  6304  eqer  6712  ener  6931  rexfiuz  11500  bdth  16194
  Copyright terms: Public domain W3C validator