ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2th Unicode version

Theorem 2th 174
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
2th.1  |-  ph
2th.2  |-  ps
Assertion
Ref Expression
2th  |-  ( ph  <->  ps )

Proof of Theorem 2th
StepHypRef Expression
1 2th.2 . . 3  |-  ps
21a1i 9 . 2  |-  ( ph  ->  ps )
3 2th.1 . . 3  |-  ph
43a1i 9 . 2  |-  ( ps 
->  ph )
52, 4impbii 126 1  |-  ( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  trujust  1375  dftru2  1381  bitru  1385  vjust  2773  pwv  3849  int0  3899  0iin  3986  snnex  4496  ruv  4599  fo1st  6245  fo2nd  6246  eqer  6654  ener  6873  rexfiuz  11333  bdth  15804
  Copyright terms: Public domain W3C validator