ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p1e9 GIF version

Theorem 8p1e9 9177
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
8p1e9 (8 + 1) = 9

Proof of Theorem 8p1e9
StepHypRef Expression
1 df-9 9102 . 2 9 = (8 + 1)
21eqcomi 2209 1 (8 + 1) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5944  1c1 7926   + caddc 7928  8c8 9093  9c9 9094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-9 9102
This theorem is referenced by:  cos2bnd  12071
  Copyright terms: Public domain W3C validator