ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p1e9 GIF version

Theorem 8p1e9 8997
Description: 8 + 1 = 9. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
8p1e9 (8 + 1) = 9

Proof of Theorem 8p1e9
StepHypRef Expression
1 df-9 8923 . 2 9 = (8 + 1)
21eqcomi 2169 1 (8 + 1) = 9
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5842  1c1 7754   + caddc 7756  8c8 8914  9c9 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-9 8923
This theorem is referenced by:  cos2bnd  11701
  Copyright terms: Public domain W3C validator