Proof of Theorem cos2bnd
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 7cn 9074 | 
. . . . . 6
⊢ 7 ∈
ℂ | 
| 2 |   | 9cn 9078 | 
. . . . . 6
⊢ 9 ∈
ℂ | 
| 3 |   | 9re 9077 | 
. . . . . . 7
⊢ 9 ∈
ℝ | 
| 4 |   | 9pos 9094 | 
. . . . . . 7
⊢ 0 <
9 | 
| 5 | 3, 4 | gt0ap0ii 8655 | 
. . . . . 6
⊢ 9 #
0 | 
| 6 |   | divnegap 8733 | 
. . . . . 6
⊢ ((7
∈ ℂ ∧ 9 ∈ ℂ ∧ 9 # 0) → -(7 / 9) = (-7 /
9)) | 
| 7 | 1, 2, 5, 6 | mp3an 1348 | 
. . . . 5
⊢ -(7 / 9)
= (-7 / 9) | 
| 8 |   | 2cn 9061 | 
. . . . . . 7
⊢ 2 ∈
ℂ | 
| 9 | 2, 5 | pm3.2i 272 | 
. . . . . . 7
⊢ (9 ∈
ℂ ∧ 9 # 0) | 
| 10 |   | divsubdirap 8735 | 
. . . . . . 7
⊢ ((2
∈ ℂ ∧ 9 ∈ ℂ ∧ (9 ∈ ℂ ∧ 9 # 0))
→ ((2 − 9) / 9) = ((2 / 9) − (9 / 9))) | 
| 11 | 8, 2, 9, 10 | mp3an 1348 | 
. . . . . 6
⊢ ((2
− 9) / 9) = ((2 / 9) − (9 / 9)) | 
| 12 | 2, 8 | negsubdi2i 8312 | 
. . . . . . . 8
⊢ -(9
− 2) = (2 − 9) | 
| 13 |   | 7p2e9 9142 | 
. . . . . . . . . 10
⊢ (7 + 2) =
9 | 
| 14 | 2, 8, 1 | subadd2i 8314 | 
. . . . . . . . . 10
⊢ ((9
− 2) = 7 ↔ (7 + 2) = 9) | 
| 15 | 13, 14 | mpbir 146 | 
. . . . . . . . 9
⊢ (9
− 2) = 7 | 
| 16 | 15 | negeqi 8220 | 
. . . . . . . 8
⊢ -(9
− 2) = -7 | 
| 17 | 12, 16 | eqtr3i 2219 | 
. . . . . . 7
⊢ (2
− 9) = -7 | 
| 18 | 17 | oveq1i 5932 | 
. . . . . 6
⊢ ((2
− 9) / 9) = (-7 / 9) | 
| 19 | 11, 18 | eqtr3i 2219 | 
. . . . 5
⊢ ((2 / 9)
− (9 / 9)) = (-7 / 9) | 
| 20 | 2, 5 | dividapi 8772 | 
. . . . . 6
⊢ (9 / 9) =
1 | 
| 21 | 20 | oveq2i 5933 | 
. . . . 5
⊢ ((2 / 9)
− (9 / 9)) = ((2 / 9) − 1) | 
| 22 | 7, 19, 21 | 3eqtr2ri 2224 | 
. . . 4
⊢ ((2 / 9)
− 1) = -(7 / 9) | 
| 23 |   | ax-1cn 7972 | 
. . . . . . . 8
⊢ 1 ∈
ℂ | 
| 24 | 8, 23, 2, 5 | divassapi 8795 | 
. . . . . . 7
⊢ ((2
· 1) / 9) = (2 · (1 / 9)) | 
| 25 |   | 2t1e2 9144 | 
. . . . . . . 8
⊢ (2
· 1) = 2 | 
| 26 | 25 | oveq1i 5932 | 
. . . . . . 7
⊢ ((2
· 1) / 9) = (2 / 9) | 
| 27 | 24, 26 | eqtr3i 2219 | 
. . . . . 6
⊢ (2
· (1 / 9)) = (2 / 9) | 
| 28 |   | 3cn 9065 | 
. . . . . . . . . 10
⊢ 3 ∈
ℂ | 
| 29 |   | 3ap0 9086 | 
. . . . . . . . . 10
⊢ 3 #
0 | 
| 30 | 23, 28, 29 | sqdivapi 10715 | 
. . . . . . . . 9
⊢ ((1 /
3)↑2) = ((1↑2) / (3↑2)) | 
| 31 |   | sq1 10725 | 
. . . . . . . . . 10
⊢
(1↑2) = 1 | 
| 32 |   | sq3 10728 | 
. . . . . . . . . 10
⊢
(3↑2) = 9 | 
| 33 | 31, 32 | oveq12i 5934 | 
. . . . . . . . 9
⊢
((1↑2) / (3↑2)) = (1 / 9) | 
| 34 | 30, 33 | eqtri 2217 | 
. . . . . . . 8
⊢ ((1 /
3)↑2) = (1 / 9) | 
| 35 |   | cos1bnd 11924 | 
. . . . . . . . . 10
⊢ ((1 / 3)
< (cos‘1) ∧ (cos‘1) < (2 / 3)) | 
| 36 | 35 | simpli 111 | 
. . . . . . . . 9
⊢ (1 / 3)
< (cos‘1) | 
| 37 |   | 0le1 8508 | 
. . . . . . . . . . 11
⊢ 0 ≤
1 | 
| 38 |   | 3pos 9084 | 
. . . . . . . . . . 11
⊢ 0 <
3 | 
| 39 |   | 1re 8025 | 
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ | 
| 40 |   | 3re 9064 | 
. . . . . . . . . . . 12
⊢ 3 ∈
ℝ | 
| 41 | 39, 40 | divge0i 8938 | 
. . . . . . . . . . 11
⊢ ((0 ≤
1 ∧ 0 < 3) → 0 ≤ (1 / 3)) | 
| 42 | 37, 38, 41 | mp2an 426 | 
. . . . . . . . . 10
⊢ 0 ≤ (1
/ 3) | 
| 43 |   | 0re 8026 | 
. . . . . . . . . . 11
⊢ 0 ∈
ℝ | 
| 44 |   | recoscl 11886 | 
. . . . . . . . . . . 12
⊢ (1 ∈
ℝ → (cos‘1) ∈ ℝ) | 
| 45 | 39, 44 | ax-mp 5 | 
. . . . . . . . . . 11
⊢
(cos‘1) ∈ ℝ | 
| 46 | 40, 29 | rerecclapi 8804 | 
. . . . . . . . . . . . 13
⊢ (1 / 3)
∈ ℝ | 
| 47 | 43, 46, 45 | lelttri 8132 | 
. . . . . . . . . . . 12
⊢ ((0 ≤
(1 / 3) ∧ (1 / 3) < (cos‘1)) → 0 <
(cos‘1)) | 
| 48 | 42, 36, 47 | mp2an 426 | 
. . . . . . . . . . 11
⊢ 0 <
(cos‘1) | 
| 49 | 43, 45, 48 | ltleii 8129 | 
. . . . . . . . . 10
⊢ 0 ≤
(cos‘1) | 
| 50 | 46, 45 | lt2sqi 10719 | 
. . . . . . . . . 10
⊢ ((0 ≤
(1 / 3) ∧ 0 ≤ (cos‘1)) → ((1 / 3) < (cos‘1) ↔
((1 / 3)↑2) < ((cos‘1)↑2))) | 
| 51 | 42, 49, 50 | mp2an 426 | 
. . . . . . . . 9
⊢ ((1 / 3)
< (cos‘1) ↔ ((1 / 3)↑2) <
((cos‘1)↑2)) | 
| 52 | 36, 51 | mpbi 145 | 
. . . . . . . 8
⊢ ((1 /
3)↑2) < ((cos‘1)↑2) | 
| 53 | 34, 52 | eqbrtrri 4056 | 
. . . . . . 7
⊢ (1 / 9)
< ((cos‘1)↑2) | 
| 54 |   | 2pos 9081 | 
. . . . . . . 8
⊢ 0 <
2 | 
| 55 | 3, 5 | rerecclapi 8804 | 
. . . . . . . . 9
⊢ (1 / 9)
∈ ℝ | 
| 56 | 45 | resqcli 10716 | 
. . . . . . . . 9
⊢
((cos‘1)↑2) ∈ ℝ | 
| 57 |   | 2re 9060 | 
. . . . . . . . 9
⊢ 2 ∈
ℝ | 
| 58 | 55, 56, 57 | ltmul2i 8950 | 
. . . . . . . 8
⊢ (0 < 2
→ ((1 / 9) < ((cos‘1)↑2) ↔ (2 · (1 / 9)) < (2
· ((cos‘1)↑2)))) | 
| 59 | 54, 58 | ax-mp 5 | 
. . . . . . 7
⊢ ((1 / 9)
< ((cos‘1)↑2) ↔ (2 · (1 / 9)) < (2 ·
((cos‘1)↑2))) | 
| 60 | 53, 59 | mpbi 145 | 
. . . . . 6
⊢ (2
· (1 / 9)) < (2 · ((cos‘1)↑2)) | 
| 61 | 27, 60 | eqbrtrri 4056 | 
. . . . 5
⊢ (2 / 9)
< (2 · ((cos‘1)↑2)) | 
| 62 | 57, 3, 5 | redivclapi 8806 | 
. . . . . 6
⊢ (2 / 9)
∈ ℝ | 
| 63 | 57, 56 | remulcli 8040 | 
. . . . . 6
⊢ (2
· ((cos‘1)↑2)) ∈ ℝ | 
| 64 |   | ltsub1 8485 | 
. . . . . 6
⊢ (((2 / 9)
∈ ℝ ∧ (2 · ((cos‘1)↑2)) ∈ ℝ ∧ 1
∈ ℝ) → ((2 / 9) < (2 · ((cos‘1)↑2)) ↔
((2 / 9) − 1) < ((2 · ((cos‘1)↑2)) −
1))) | 
| 65 | 62, 63, 39, 64 | mp3an 1348 | 
. . . . 5
⊢ ((2 / 9)
< (2 · ((cos‘1)↑2)) ↔ ((2 / 9) − 1) < ((2
· ((cos‘1)↑2)) − 1)) | 
| 66 | 61, 65 | mpbi 145 | 
. . . 4
⊢ ((2 / 9)
− 1) < ((2 · ((cos‘1)↑2)) −
1) | 
| 67 | 22, 66 | eqbrtrri 4056 | 
. . 3
⊢ -(7 / 9)
< ((2 · ((cos‘1)↑2)) − 1) | 
| 68 | 25 | fveq2i 5561 | 
. . . 4
⊢
(cos‘(2 · 1)) = (cos‘2) | 
| 69 |   | cos2t 11915 | 
. . . . 5
⊢ (1 ∈
ℂ → (cos‘(2 · 1)) = ((2 ·
((cos‘1)↑2)) − 1)) | 
| 70 | 23, 69 | ax-mp 5 | 
. . . 4
⊢
(cos‘(2 · 1)) = ((2 · ((cos‘1)↑2))
− 1) | 
| 71 | 68, 70 | eqtr3i 2219 | 
. . 3
⊢
(cos‘2) = ((2 · ((cos‘1)↑2)) −
1) | 
| 72 | 67, 71 | breqtrri 4060 | 
. 2
⊢ -(7 / 9)
< (cos‘2) | 
| 73 | 35 | simpri 113 | 
. . . . . . . . 9
⊢
(cos‘1) < (2 / 3) | 
| 74 |   | 0le2 9080 | 
. . . . . . . . . . 11
⊢ 0 ≤
2 | 
| 75 | 57, 40 | divge0i 8938 | 
. . . . . . . . . . 11
⊢ ((0 ≤
2 ∧ 0 < 3) → 0 ≤ (2 / 3)) | 
| 76 | 74, 38, 75 | mp2an 426 | 
. . . . . . . . . 10
⊢ 0 ≤ (2
/ 3) | 
| 77 | 57, 40, 29 | redivclapi 8806 | 
. . . . . . . . . . 11
⊢ (2 / 3)
∈ ℝ | 
| 78 | 45, 77 | lt2sqi 10719 | 
. . . . . . . . . 10
⊢ ((0 ≤
(cos‘1) ∧ 0 ≤ (2 / 3)) → ((cos‘1) < (2 / 3) ↔
((cos‘1)↑2) < ((2 / 3)↑2))) | 
| 79 | 49, 76, 78 | mp2an 426 | 
. . . . . . . . 9
⊢
((cos‘1) < (2 / 3) ↔ ((cos‘1)↑2) < ((2 /
3)↑2)) | 
| 80 | 73, 79 | mpbi 145 | 
. . . . . . . 8
⊢
((cos‘1)↑2) < ((2 / 3)↑2) | 
| 81 | 8, 28, 29 | sqdivapi 10715 | 
. . . . . . . . 9
⊢ ((2 /
3)↑2) = ((2↑2) / (3↑2)) | 
| 82 |   | sq2 10727 | 
. . . . . . . . . 10
⊢
(2↑2) = 4 | 
| 83 | 82, 32 | oveq12i 5934 | 
. . . . . . . . 9
⊢
((2↑2) / (3↑2)) = (4 / 9) | 
| 84 | 81, 83 | eqtri 2217 | 
. . . . . . . 8
⊢ ((2 /
3)↑2) = (4 / 9) | 
| 85 | 80, 84 | breqtri 4058 | 
. . . . . . 7
⊢
((cos‘1)↑2) < (4 / 9) | 
| 86 |   | 4re 9067 | 
. . . . . . . . . 10
⊢ 4 ∈
ℝ | 
| 87 | 86, 3, 5 | redivclapi 8806 | 
. . . . . . . . 9
⊢ (4 / 9)
∈ ℝ | 
| 88 | 56, 87, 57 | ltmul2i 8950 | 
. . . . . . . 8
⊢ (0 < 2
→ (((cos‘1)↑2) < (4 / 9) ↔ (2 ·
((cos‘1)↑2)) < (2 · (4 / 9)))) | 
| 89 | 54, 88 | ax-mp 5 | 
. . . . . . 7
⊢
(((cos‘1)↑2) < (4 / 9) ↔ (2 ·
((cos‘1)↑2)) < (2 · (4 / 9))) | 
| 90 | 85, 89 | mpbi 145 | 
. . . . . 6
⊢ (2
· ((cos‘1)↑2)) < (2 · (4 / 9)) | 
| 91 |   | 4cn 9068 | 
. . . . . . . 8
⊢ 4 ∈
ℂ | 
| 92 | 8, 91, 2, 5 | divassapi 8795 | 
. . . . . . 7
⊢ ((2
· 4) / 9) = (2 · (4 / 9)) | 
| 93 |   | 4t2e8 9149 | 
. . . . . . . . 9
⊢ (4
· 2) = 8 | 
| 94 | 91, 8, 93 | mulcomli 8033 | 
. . . . . . . 8
⊢ (2
· 4) = 8 | 
| 95 | 94 | oveq1i 5932 | 
. . . . . . 7
⊢ ((2
· 4) / 9) = (8 / 9) | 
| 96 | 92, 95 | eqtr3i 2219 | 
. . . . . 6
⊢ (2
· (4 / 9)) = (8 / 9) | 
| 97 | 90, 96 | breqtri 4058 | 
. . . . 5
⊢ (2
· ((cos‘1)↑2)) < (8 / 9) | 
| 98 |   | 8re 9075 | 
. . . . . . 7
⊢ 8 ∈
ℝ | 
| 99 | 98, 3, 5 | redivclapi 8806 | 
. . . . . 6
⊢ (8 / 9)
∈ ℝ | 
| 100 |   | ltsub1 8485 | 
. . . . . 6
⊢ (((2
· ((cos‘1)↑2)) ∈ ℝ ∧ (8 / 9) ∈ ℝ
∧ 1 ∈ ℝ) → ((2 · ((cos‘1)↑2)) < (8 /
9) ↔ ((2 · ((cos‘1)↑2)) − 1) < ((8 / 9) −
1))) | 
| 101 | 63, 99, 39, 100 | mp3an 1348 | 
. . . . 5
⊢ ((2
· ((cos‘1)↑2)) < (8 / 9) ↔ ((2 ·
((cos‘1)↑2)) − 1) < ((8 / 9) − 1)) | 
| 102 | 97, 101 | mpbi 145 | 
. . . 4
⊢ ((2
· ((cos‘1)↑2)) − 1) < ((8 / 9) −
1) | 
| 103 | 20 | oveq2i 5933 | 
. . . . 5
⊢ ((8 / 9)
− (9 / 9)) = ((8 / 9) − 1) | 
| 104 |   | divnegap 8733 | 
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 9 ∈ ℂ ∧ 9 # 0) → -(1 / 9) = (-1 /
9)) | 
| 105 | 23, 2, 5, 104 | mp3an 1348 | 
. . . . . 6
⊢ -(1 / 9)
= (-1 / 9) | 
| 106 |   | 8cn 9076 | 
. . . . . . . . 9
⊢ 8 ∈
ℂ | 
| 107 | 2, 106 | negsubdi2i 8312 | 
. . . . . . . 8
⊢ -(9
− 8) = (8 − 9) | 
| 108 |   | 8p1e9 9131 | 
. . . . . . . . . 10
⊢ (8 + 1) =
9 | 
| 109 | 2, 106, 23, 108 | subaddrii 8315 | 
. . . . . . . . 9
⊢ (9
− 8) = 1 | 
| 110 | 109 | negeqi 8220 | 
. . . . . . . 8
⊢ -(9
− 8) = -1 | 
| 111 | 107, 110 | eqtr3i 2219 | 
. . . . . . 7
⊢ (8
− 9) = -1 | 
| 112 | 111 | oveq1i 5932 | 
. . . . . 6
⊢ ((8
− 9) / 9) = (-1 / 9) | 
| 113 |   | divsubdirap 8735 | 
. . . . . . 7
⊢ ((8
∈ ℂ ∧ 9 ∈ ℂ ∧ (9 ∈ ℂ ∧ 9 # 0))
→ ((8 − 9) / 9) = ((8 / 9) − (9 / 9))) | 
| 114 | 106, 2, 9, 113 | mp3an 1348 | 
. . . . . 6
⊢ ((8
− 9) / 9) = ((8 / 9) − (9 / 9)) | 
| 115 | 105, 112,
114 | 3eqtr2ri 2224 | 
. . . . 5
⊢ ((8 / 9)
− (9 / 9)) = -(1 / 9) | 
| 116 | 103, 115 | eqtr3i 2219 | 
. . . 4
⊢ ((8 / 9)
− 1) = -(1 / 9) | 
| 117 | 102, 116 | breqtri 4058 | 
. . 3
⊢ ((2
· ((cos‘1)↑2)) − 1) < -(1 / 9) | 
| 118 | 71, 117 | eqbrtri 4054 | 
. 2
⊢
(cos‘2) < -(1 / 9) | 
| 119 | 72, 118 | pm3.2i 272 | 
1
⊢ (-(7 / 9)
< (cos‘2) ∧ (cos‘2) < -(1 / 9)) |