ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos2bnd GIF version

Theorem cos2bnd 11752
Description: Bounds on the cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos2bnd (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9))

Proof of Theorem cos2bnd
StepHypRef Expression
1 7cn 8992 . . . . . 6 7 ∈ ℂ
2 9cn 8996 . . . . . 6 9 ∈ ℂ
3 9re 8995 . . . . . . 7 9 ∈ ℝ
4 9pos 9012 . . . . . . 7 0 < 9
53, 4gt0ap0ii 8575 . . . . . 6 9 # 0
6 divnegap 8652 . . . . . 6 ((7 ∈ ℂ ∧ 9 ∈ ℂ ∧ 9 # 0) → -(7 / 9) = (-7 / 9))
71, 2, 5, 6mp3an 1337 . . . . 5 -(7 / 9) = (-7 / 9)
8 2cn 8979 . . . . . . 7 2 ∈ ℂ
92, 5pm3.2i 272 . . . . . . 7 (9 ∈ ℂ ∧ 9 # 0)
10 divsubdirap 8654 . . . . . . 7 ((2 ∈ ℂ ∧ 9 ∈ ℂ ∧ (9 ∈ ℂ ∧ 9 # 0)) → ((2 − 9) / 9) = ((2 / 9) − (9 / 9)))
118, 2, 9, 10mp3an 1337 . . . . . 6 ((2 − 9) / 9) = ((2 / 9) − (9 / 9))
122, 8negsubdi2i 8233 . . . . . . . 8 -(9 − 2) = (2 − 9)
13 7p2e9 9059 . . . . . . . . . 10 (7 + 2) = 9
142, 8, 1subadd2i 8235 . . . . . . . . . 10 ((9 − 2) = 7 ↔ (7 + 2) = 9)
1513, 14mpbir 146 . . . . . . . . 9 (9 − 2) = 7
1615negeqi 8141 . . . . . . . 8 -(9 − 2) = -7
1712, 16eqtr3i 2200 . . . . . . 7 (2 − 9) = -7
1817oveq1i 5879 . . . . . 6 ((2 − 9) / 9) = (-7 / 9)
1911, 18eqtr3i 2200 . . . . 5 ((2 / 9) − (9 / 9)) = (-7 / 9)
202, 5dividapi 8691 . . . . . 6 (9 / 9) = 1
2120oveq2i 5880 . . . . 5 ((2 / 9) − (9 / 9)) = ((2 / 9) − 1)
227, 19, 213eqtr2ri 2205 . . . 4 ((2 / 9) − 1) = -(7 / 9)
23 ax-1cn 7895 . . . . . . . 8 1 ∈ ℂ
248, 23, 2, 5divassapi 8714 . . . . . . 7 ((2 · 1) / 9) = (2 · (1 / 9))
25 2t1e2 9061 . . . . . . . 8 (2 · 1) = 2
2625oveq1i 5879 . . . . . . 7 ((2 · 1) / 9) = (2 / 9)
2724, 26eqtr3i 2200 . . . . . 6 (2 · (1 / 9)) = (2 / 9)
28 3cn 8983 . . . . . . . . . 10 3 ∈ ℂ
29 3ap0 9004 . . . . . . . . . 10 3 # 0
3023, 28, 29sqdivapi 10589 . . . . . . . . 9 ((1 / 3)↑2) = ((1↑2) / (3↑2))
31 sq1 10599 . . . . . . . . . 10 (1↑2) = 1
32 sq3 10602 . . . . . . . . . 10 (3↑2) = 9
3331, 32oveq12i 5881 . . . . . . . . 9 ((1↑2) / (3↑2)) = (1 / 9)
3430, 33eqtri 2198 . . . . . . . 8 ((1 / 3)↑2) = (1 / 9)
35 cos1bnd 11751 . . . . . . . . . 10 ((1 / 3) < (cos‘1) ∧ (cos‘1) < (2 / 3))
3635simpli 111 . . . . . . . . 9 (1 / 3) < (cos‘1)
37 0le1 8428 . . . . . . . . . . 11 0 ≤ 1
38 3pos 9002 . . . . . . . . . . 11 0 < 3
39 1re 7947 . . . . . . . . . . . 12 1 ∈ ℝ
40 3re 8982 . . . . . . . . . . . 12 3 ∈ ℝ
4139, 40divge0i 8857 . . . . . . . . . . 11 ((0 ≤ 1 ∧ 0 < 3) → 0 ≤ (1 / 3))
4237, 38, 41mp2an 426 . . . . . . . . . 10 0 ≤ (1 / 3)
43 0re 7948 . . . . . . . . . . 11 0 ∈ ℝ
44 recoscl 11713 . . . . . . . . . . . 12 (1 ∈ ℝ → (cos‘1) ∈ ℝ)
4539, 44ax-mp 5 . . . . . . . . . . 11 (cos‘1) ∈ ℝ
4640, 29rerecclapi 8723 . . . . . . . . . . . . 13 (1 / 3) ∈ ℝ
4743, 46, 45lelttri 8053 . . . . . . . . . . . 12 ((0 ≤ (1 / 3) ∧ (1 / 3) < (cos‘1)) → 0 < (cos‘1))
4842, 36, 47mp2an 426 . . . . . . . . . . 11 0 < (cos‘1)
4943, 45, 48ltleii 8050 . . . . . . . . . 10 0 ≤ (cos‘1)
5046, 45lt2sqi 10593 . . . . . . . . . 10 ((0 ≤ (1 / 3) ∧ 0 ≤ (cos‘1)) → ((1 / 3) < (cos‘1) ↔ ((1 / 3)↑2) < ((cos‘1)↑2)))
5142, 49, 50mp2an 426 . . . . . . . . 9 ((1 / 3) < (cos‘1) ↔ ((1 / 3)↑2) < ((cos‘1)↑2))
5236, 51mpbi 145 . . . . . . . 8 ((1 / 3)↑2) < ((cos‘1)↑2)
5334, 52eqbrtrri 4023 . . . . . . 7 (1 / 9) < ((cos‘1)↑2)
54 2pos 8999 . . . . . . . 8 0 < 2
553, 5rerecclapi 8723 . . . . . . . . 9 (1 / 9) ∈ ℝ
5645resqcli 10590 . . . . . . . . 9 ((cos‘1)↑2) ∈ ℝ
57 2re 8978 . . . . . . . . 9 2 ∈ ℝ
5855, 56, 57ltmul2i 8869 . . . . . . . 8 (0 < 2 → ((1 / 9) < ((cos‘1)↑2) ↔ (2 · (1 / 9)) < (2 · ((cos‘1)↑2))))
5954, 58ax-mp 5 . . . . . . 7 ((1 / 9) < ((cos‘1)↑2) ↔ (2 · (1 / 9)) < (2 · ((cos‘1)↑2)))
6053, 59mpbi 145 . . . . . 6 (2 · (1 / 9)) < (2 · ((cos‘1)↑2))
6127, 60eqbrtrri 4023 . . . . 5 (2 / 9) < (2 · ((cos‘1)↑2))
6257, 3, 5redivclapi 8725 . . . . . 6 (2 / 9) ∈ ℝ
6357, 56remulcli 7962 . . . . . 6 (2 · ((cos‘1)↑2)) ∈ ℝ
64 ltsub1 8405 . . . . . 6 (((2 / 9) ∈ ℝ ∧ (2 · ((cos‘1)↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 / 9) < (2 · ((cos‘1)↑2)) ↔ ((2 / 9) − 1) < ((2 · ((cos‘1)↑2)) − 1)))
6562, 63, 39, 64mp3an 1337 . . . . 5 ((2 / 9) < (2 · ((cos‘1)↑2)) ↔ ((2 / 9) − 1) < ((2 · ((cos‘1)↑2)) − 1))
6661, 65mpbi 145 . . . 4 ((2 / 9) − 1) < ((2 · ((cos‘1)↑2)) − 1)
6722, 66eqbrtrri 4023 . . 3 -(7 / 9) < ((2 · ((cos‘1)↑2)) − 1)
6825fveq2i 5514 . . . 4 (cos‘(2 · 1)) = (cos‘2)
69 cos2t 11742 . . . . 5 (1 ∈ ℂ → (cos‘(2 · 1)) = ((2 · ((cos‘1)↑2)) − 1))
7023, 69ax-mp 5 . . . 4 (cos‘(2 · 1)) = ((2 · ((cos‘1)↑2)) − 1)
7168, 70eqtr3i 2200 . . 3 (cos‘2) = ((2 · ((cos‘1)↑2)) − 1)
7267, 71breqtrri 4027 . 2 -(7 / 9) < (cos‘2)
7335simpri 113 . . . . . . . . 9 (cos‘1) < (2 / 3)
74 0le2 8998 . . . . . . . . . . 11 0 ≤ 2
7557, 40divge0i 8857 . . . . . . . . . . 11 ((0 ≤ 2 ∧ 0 < 3) → 0 ≤ (2 / 3))
7674, 38, 75mp2an 426 . . . . . . . . . 10 0 ≤ (2 / 3)
7757, 40, 29redivclapi 8725 . . . . . . . . . . 11 (2 / 3) ∈ ℝ
7845, 77lt2sqi 10593 . . . . . . . . . 10 ((0 ≤ (cos‘1) ∧ 0 ≤ (2 / 3)) → ((cos‘1) < (2 / 3) ↔ ((cos‘1)↑2) < ((2 / 3)↑2)))
7949, 76, 78mp2an 426 . . . . . . . . 9 ((cos‘1) < (2 / 3) ↔ ((cos‘1)↑2) < ((2 / 3)↑2))
8073, 79mpbi 145 . . . . . . . 8 ((cos‘1)↑2) < ((2 / 3)↑2)
818, 28, 29sqdivapi 10589 . . . . . . . . 9 ((2 / 3)↑2) = ((2↑2) / (3↑2))
82 sq2 10601 . . . . . . . . . 10 (2↑2) = 4
8382, 32oveq12i 5881 . . . . . . . . 9 ((2↑2) / (3↑2)) = (4 / 9)
8481, 83eqtri 2198 . . . . . . . 8 ((2 / 3)↑2) = (4 / 9)
8580, 84breqtri 4025 . . . . . . 7 ((cos‘1)↑2) < (4 / 9)
86 4re 8985 . . . . . . . . . 10 4 ∈ ℝ
8786, 3, 5redivclapi 8725 . . . . . . . . 9 (4 / 9) ∈ ℝ
8856, 87, 57ltmul2i 8869 . . . . . . . 8 (0 < 2 → (((cos‘1)↑2) < (4 / 9) ↔ (2 · ((cos‘1)↑2)) < (2 · (4 / 9))))
8954, 88ax-mp 5 . . . . . . 7 (((cos‘1)↑2) < (4 / 9) ↔ (2 · ((cos‘1)↑2)) < (2 · (4 / 9)))
9085, 89mpbi 145 . . . . . 6 (2 · ((cos‘1)↑2)) < (2 · (4 / 9))
91 4cn 8986 . . . . . . . 8 4 ∈ ℂ
928, 91, 2, 5divassapi 8714 . . . . . . 7 ((2 · 4) / 9) = (2 · (4 / 9))
93 4t2e8 9066 . . . . . . . . 9 (4 · 2) = 8
9491, 8, 93mulcomli 7955 . . . . . . . 8 (2 · 4) = 8
9594oveq1i 5879 . . . . . . 7 ((2 · 4) / 9) = (8 / 9)
9692, 95eqtr3i 2200 . . . . . 6 (2 · (4 / 9)) = (8 / 9)
9790, 96breqtri 4025 . . . . 5 (2 · ((cos‘1)↑2)) < (8 / 9)
98 8re 8993 . . . . . . 7 8 ∈ ℝ
9998, 3, 5redivclapi 8725 . . . . . 6 (8 / 9) ∈ ℝ
100 ltsub1 8405 . . . . . 6 (((2 · ((cos‘1)↑2)) ∈ ℝ ∧ (8 / 9) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((cos‘1)↑2)) < (8 / 9) ↔ ((2 · ((cos‘1)↑2)) − 1) < ((8 / 9) − 1)))
10163, 99, 39, 100mp3an 1337 . . . . 5 ((2 · ((cos‘1)↑2)) < (8 / 9) ↔ ((2 · ((cos‘1)↑2)) − 1) < ((8 / 9) − 1))
10297, 101mpbi 145 . . . 4 ((2 · ((cos‘1)↑2)) − 1) < ((8 / 9) − 1)
10320oveq2i 5880 . . . . 5 ((8 / 9) − (9 / 9)) = ((8 / 9) − 1)
104 divnegap 8652 . . . . . . 7 ((1 ∈ ℂ ∧ 9 ∈ ℂ ∧ 9 # 0) → -(1 / 9) = (-1 / 9))
10523, 2, 5, 104mp3an 1337 . . . . . 6 -(1 / 9) = (-1 / 9)
106 8cn 8994 . . . . . . . . 9 8 ∈ ℂ
1072, 106negsubdi2i 8233 . . . . . . . 8 -(9 − 8) = (8 − 9)
108 8p1e9 9048 . . . . . . . . . 10 (8 + 1) = 9
1092, 106, 23, 108subaddrii 8236 . . . . . . . . 9 (9 − 8) = 1
110109negeqi 8141 . . . . . . . 8 -(9 − 8) = -1
111107, 110eqtr3i 2200 . . . . . . 7 (8 − 9) = -1
112111oveq1i 5879 . . . . . 6 ((8 − 9) / 9) = (-1 / 9)
113 divsubdirap 8654 . . . . . . 7 ((8 ∈ ℂ ∧ 9 ∈ ℂ ∧ (9 ∈ ℂ ∧ 9 # 0)) → ((8 − 9) / 9) = ((8 / 9) − (9 / 9)))
114106, 2, 9, 113mp3an 1337 . . . . . 6 ((8 − 9) / 9) = ((8 / 9) − (9 / 9))
115105, 112, 1143eqtr2ri 2205 . . . . 5 ((8 / 9) − (9 / 9)) = -(1 / 9)
116103, 115eqtr3i 2200 . . . 4 ((8 / 9) − 1) = -(1 / 9)
117102, 116breqtri 4025 . . 3 ((2 · ((cos‘1)↑2)) − 1) < -(1 / 9)
11871, 117eqbrtri 4021 . 2 (cos‘2) < -(1 / 9)
11972, 118pm3.2i 272 1 (-(7 / 9) < (cos‘2) ∧ (cos‘2) < -(1 / 9))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118  -cneg 8119   # cap 8528   / cdiv 8618  2c2 8959  3c3 8960  4c4 8961  7c7 8964  8c8 8965  9c9 8966  cexp 10505  cosccos 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ioc 9880  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643
This theorem is referenced by:  sincos2sgn  11757
  Copyright terms: Public domain W3C validator