ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p2e5 GIF version

Theorem 3p2e5 9126
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p2e5 (3 + 2) = 5

Proof of Theorem 3p2e5
StepHypRef Expression
1 df-2 9043 . . . . 5 2 = (1 + 1)
21oveq2i 5930 . . . 4 (3 + 2) = (3 + (1 + 1))
3 3cn 9059 . . . . 5 3 ∈ ℂ
4 ax-1cn 7967 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 8029 . . . 4 ((3 + 1) + 1) = (3 + (1 + 1))
62, 5eqtr4i 2217 . . 3 (3 + 2) = ((3 + 1) + 1)
7 df-4 9045 . . . 4 4 = (3 + 1)
87oveq1i 5929 . . 3 (4 + 1) = ((3 + 1) + 1)
96, 8eqtr4i 2217 . 2 (3 + 2) = (4 + 1)
10 df-5 9046 . 2 5 = (4 + 1)
119, 10eqtr4i 2217 1 (3 + 2) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5919  1c1 7875   + caddc 7877  2c2 9035  3c3 9036  4c4 9037  5c5 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-addrcl 7971  ax-addass 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922  df-2 9043  df-3 9044  df-4 9045  df-5 9046
This theorem is referenced by:  3p3e6  9127  2lgsoddprmlem3d  15258
  Copyright terms: Public domain W3C validator