ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p2e5 GIF version

Theorem 3p2e5 9062
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p2e5 (3 + 2) = 5

Proof of Theorem 3p2e5
StepHypRef Expression
1 df-2 8980 . . . . 5 2 = (1 + 1)
21oveq2i 5888 . . . 4 (3 + 2) = (3 + (1 + 1))
3 3cn 8996 . . . . 5 3 ∈ ℂ
4 ax-1cn 7906 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 7967 . . . 4 ((3 + 1) + 1) = (3 + (1 + 1))
62, 5eqtr4i 2201 . . 3 (3 + 2) = ((3 + 1) + 1)
7 df-4 8982 . . . 4 4 = (3 + 1)
87oveq1i 5887 . . 3 (4 + 1) = ((3 + 1) + 1)
96, 8eqtr4i 2201 . 2 (3 + 2) = (4 + 1)
10 df-5 8983 . 2 5 = (4 + 1)
119, 10eqtr4i 2201 1 (3 + 2) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1353  (class class class)co 5877  1c1 7814   + caddc 7816  2c2 8972  3c3 8973  4c4 8974  5c5 8975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-addrcl 7910  ax-addass 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880  df-2 8980  df-3 8981  df-4 8982  df-5 8983
This theorem is referenced by:  3p3e6  9063  2lgsoddprmlem3d  14543
  Copyright terms: Public domain W3C validator