| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3p2e5 | GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9066 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 5936 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 9082 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 7989 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 8051 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2220 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 9068 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 5935 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2220 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 9069 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2220 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 1c1 7897 + caddc 7899 2c2 9058 3c3 9059 4c4 9060 5c5 9061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-addrcl 7993 ax-addass 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-2 9066 df-3 9067 df-4 9068 df-5 9069 |
| This theorem is referenced by: 3p3e6 9150 2exp5 12626 2exp16 12631 2lgsoddprmlem3d 15435 |
| Copyright terms: Public domain | W3C validator |