ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3p2e5 GIF version

Theorem 3p2e5 9248
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
3p2e5 (3 + 2) = 5

Proof of Theorem 3p2e5
StepHypRef Expression
1 df-2 9165 . . . . 5 2 = (1 + 1)
21oveq2i 6011 . . . 4 (3 + 2) = (3 + (1 + 1))
3 3cn 9181 . . . . 5 3 ∈ ℂ
4 ax-1cn 8088 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 8150 . . . 4 ((3 + 1) + 1) = (3 + (1 + 1))
62, 5eqtr4i 2253 . . 3 (3 + 2) = ((3 + 1) + 1)
7 df-4 9167 . . . 4 4 = (3 + 1)
87oveq1i 6010 . . 3 (4 + 1) = ((3 + 1) + 1)
96, 8eqtr4i 2253 . 2 (3 + 2) = (4 + 1)
10 df-5 9168 . 2 5 = (4 + 1)
119, 10eqtr4i 2253 1 (3 + 2) = 5
Colors of variables: wff set class
Syntax hints:   = wceq 1395  (class class class)co 6000  1c1 7996   + caddc 7998  2c2 9157  3c3 9158  4c4 9159  5c5 9160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-addrcl 8092  ax-addass 8097
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-2 9165  df-3 9166  df-4 9167  df-5 9168
This theorem is referenced by:  3p3e6  9249  2exp5  12950  2exp16  12955  2lgsoddprmlem3d  15783
  Copyright terms: Public domain W3C validator