![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3p2e5 | GIF version |
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p2e5 | ⊢ (3 + 2) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 9043 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5930 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
3 | 3cn 9059 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | ax-1cn 7967 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 8029 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2217 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
7 | df-4 9045 | . . . 4 ⊢ 4 = (3 + 1) | |
8 | 7 | oveq1i 5929 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
9 | 6, 8 | eqtr4i 2217 | . 2 ⊢ (3 + 2) = (4 + 1) |
10 | df-5 9046 | . 2 ⊢ 5 = (4 + 1) | |
11 | 9, 10 | eqtr4i 2217 | 1 ⊢ (3 + 2) = 5 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 1c1 7875 + caddc 7877 2c2 9035 3c3 9036 4c4 9037 5c5 9038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-addrcl 7971 ax-addass 7976 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-2 9043 df-3 9044 df-4 9045 df-5 9046 |
This theorem is referenced by: 3p3e6 9127 2lgsoddprmlem3d 15258 |
Copyright terms: Public domain | W3C validator |