Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3p2e5 | GIF version |
Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p2e5 | ⊢ (3 + 2) = 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 8916 | . . . . 5 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq2i 5853 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
3 | 3cn 8932 | . . . . 5 ⊢ 3 ∈ ℂ | |
4 | ax-1cn 7846 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | 3, 4, 4 | addassi 7907 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
6 | 2, 5 | eqtr4i 2189 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
7 | df-4 8918 | . . . 4 ⊢ 4 = (3 + 1) | |
8 | 7 | oveq1i 5852 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
9 | 6, 8 | eqtr4i 2189 | . 2 ⊢ (3 + 2) = (4 + 1) |
10 | df-5 8919 | . 2 ⊢ 5 = (4 + 1) | |
11 | 9, 10 | eqtr4i 2189 | 1 ⊢ (3 + 2) = 5 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 1c1 7754 + caddc 7756 2c2 8908 3c3 8909 4c4 8910 5c5 8911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-addrcl 7850 ax-addass 7855 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-2 8916 df-3 8917 df-4 8918 df-5 8919 |
This theorem is referenced by: 3p3e6 8999 |
Copyright terms: Public domain | W3C validator |