| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3p2e5 | GIF version | ||
| Description: 3 + 2 = 5. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 3p2e5 | ⊢ (3 + 2) = 5 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 9077 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq2i 5945 | . . . 4 ⊢ (3 + 2) = (3 + (1 + 1)) |
| 3 | 3cn 9093 | . . . . 5 ⊢ 3 ∈ ℂ | |
| 4 | ax-1cn 8000 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | 3, 4, 4 | addassi 8062 | . . . 4 ⊢ ((3 + 1) + 1) = (3 + (1 + 1)) |
| 6 | 2, 5 | eqtr4i 2228 | . . 3 ⊢ (3 + 2) = ((3 + 1) + 1) |
| 7 | df-4 9079 | . . . 4 ⊢ 4 = (3 + 1) | |
| 8 | 7 | oveq1i 5944 | . . 3 ⊢ (4 + 1) = ((3 + 1) + 1) |
| 9 | 6, 8 | eqtr4i 2228 | . 2 ⊢ (3 + 2) = (4 + 1) |
| 10 | df-5 9080 | . 2 ⊢ 5 = (4 + 1) | |
| 11 | 9, 10 | eqtr4i 2228 | 1 ⊢ (3 + 2) = 5 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5934 1c1 7908 + caddc 7910 2c2 9069 3c3 9070 4c4 9071 5c5 9072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-addrcl 8004 ax-addass 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-2 9077 df-3 9078 df-4 9079 df-5 9080 |
| This theorem is referenced by: 3p3e6 9161 2exp5 12674 2exp16 12679 2lgsoddprmlem3d 15505 |
| Copyright terms: Public domain | W3C validator |