Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anabs1 | GIF version |
Description: Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
anabs1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | pm4.71i 389 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜑)) |
3 | 2 | bicomi 131 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: poirr 4292 |
Copyright terms: Public domain | W3C validator |