ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anabs1 GIF version

Theorem anabs1 567
Description: Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.) (Proof shortened by Wolf Lammen, 16-Nov-2013.)
Assertion
Ref Expression
anabs1 (((𝜑𝜓) ∧ 𝜑) ↔ (𝜑𝜓))

Proof of Theorem anabs1
StepHypRef Expression
1 simpl 108 . . 3 ((𝜑𝜓) → 𝜑)
21pm4.71i 389 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ 𝜑))
32bicomi 131 1 (((𝜑𝜓) ∧ 𝜑) ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  poirr  4292
  Copyright terms: Public domain W3C validator