ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i GIF version

Theorem pm4.71i 389
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1 (𝜑𝜓)
Assertion
Ref Expression
pm4.71i (𝜑 ↔ (𝜑𝜓))

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2 (𝜑𝜓)
2 pm4.71 387 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
31, 2mpbi 144 1 (𝜑 ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.24  393  anabs1  567  pm4.45  779  unidif0  4151  sucexb  4479  imadmrn  4961  dff1o2  5445  xpsnen  6795  dmaddpq  7328  dmmulpq  7329  eqreznegel  9560  xrnemnf  9721  xrnepnf  9722  elioopnf  9911  elioomnf  9912  elicopnf  9913  elxrge0  9922  dfrp2  10207  isprm2  12058  bj-sucexg  13879
  Copyright terms: Public domain W3C validator