| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71i | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 389 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 786 unidif0 4219 sucexb 4553 imadmrn 5041 dff1o2 5539 xpsnen 6931 dmaddpq 7512 dmmulpq 7513 eqreznegel 9755 xrnemnf 9919 xrnepnf 9920 elioopnf 10109 elioomnf 10110 elicopnf 10111 elxrge0 10120 dfrp2 10428 isprm2 12514 bj-sucexg 15996 |
| Copyright terms: Public domain | W3C validator |