| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.71i | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
| Ref | Expression |
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 389 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 785 unidif0 4201 sucexb 4534 imadmrn 5020 dff1o2 5512 xpsnen 6889 dmaddpq 7465 dmmulpq 7466 eqreznegel 9707 xrnemnf 9871 xrnepnf 9872 elioopnf 10061 elioomnf 10062 elicopnf 10063 elxrge0 10072 dfrp2 10372 isprm2 12312 bj-sucexg 15676 |
| Copyright terms: Public domain | W3C validator |