| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm4.71i | GIF version | ||
| Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| pm4.71i.1 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | pm4.71 389 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 785 unidif0 4200 sucexb 4533 imadmrn 5019 dff1o2 5509 xpsnen 6880 dmaddpq 7446 dmmulpq 7447 eqreznegel 9688 xrnemnf 9852 xrnepnf 9853 elioopnf 10042 elioomnf 10043 elicopnf 10044 elxrge0 10053 dfrp2 10353 isprm2 12285 bj-sucexg 15568 | 
| Copyright terms: Public domain | W3C validator |