ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i GIF version

Theorem pm4.71i 391
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1 (𝜑𝜓)
Assertion
Ref Expression
pm4.71i (𝜑 ↔ (𝜑𝜓))

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2 (𝜑𝜓)
2 pm4.71 389 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
31, 2mpbi 145 1 (𝜑 ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.24  395  anabs1  572  pm4.45  784  unidif0  4168  sucexb  4497  imadmrn  4981  dff1o2  5467  xpsnen  6821  dmaddpq  7378  dmmulpq  7379  eqreznegel  9614  xrnemnf  9777  xrnepnf  9778  elioopnf  9967  elioomnf  9968  elicopnf  9969  elxrge0  9978  dfrp2  10264  isprm2  12117  bj-sucexg  14677
  Copyright terms: Public domain W3C validator