ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i GIF version

Theorem pm4.71i 389
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1 (𝜑𝜓)
Assertion
Ref Expression
pm4.71i (𝜑 ↔ (𝜑𝜓))

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2 (𝜑𝜓)
2 pm4.71 387 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
31, 2mpbi 144 1 (𝜑 ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.24  393  anabs1  562  pm4.45  774  unidif0  4146  sucexb  4474  imadmrn  4956  dff1o2  5437  xpsnen  6787  dmaddpq  7320  dmmulpq  7321  eqreznegel  9552  xrnemnf  9713  xrnepnf  9714  elioopnf  9903  elioomnf  9904  elicopnf  9905  elxrge0  9914  dfrp2  10199  isprm2  12049  bj-sucexg  13804
  Copyright terms: Public domain W3C validator