Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.71i | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71 387 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm4.24 393 anabs1 562 pm4.45 774 unidif0 4146 sucexb 4474 imadmrn 4956 dff1o2 5437 xpsnen 6787 dmaddpq 7320 dmmulpq 7321 eqreznegel 9552 xrnemnf 9713 xrnepnf 9714 elioopnf 9903 elioomnf 9904 elicopnf 9905 elxrge0 9914 dfrp2 10199 isprm2 12049 bj-sucexg 13804 |
Copyright terms: Public domain | W3C validator |