![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71i | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.) |
Ref | Expression |
---|---|
pm4.71i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71i | ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71 389 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm4.24 395 anabs1 572 pm4.45 784 unidif0 4168 sucexb 4497 imadmrn 4981 dff1o2 5467 xpsnen 6821 dmaddpq 7378 dmmulpq 7379 eqreznegel 9614 xrnemnf 9777 xrnepnf 9778 elioopnf 9967 elioomnf 9968 elicopnf 9969 elxrge0 9978 dfrp2 10264 isprm2 12117 bj-sucexg 14677 |
Copyright terms: Public domain | W3C validator |