ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.71i GIF version

Theorem pm4.71i 391
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
Hypothesis
Ref Expression
pm4.71i.1 (𝜑𝜓)
Assertion
Ref Expression
pm4.71i (𝜑 ↔ (𝜑𝜓))

Proof of Theorem pm4.71i
StepHypRef Expression
1 pm4.71i.1 . 2 (𝜑𝜓)
2 pm4.71 389 . 2 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
31, 2mpbi 145 1 (𝜑 ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.24  395  anabs1  572  pm4.45  789  unidif0  4250  sucexb  4588  imadmrn  5077  dff1o2  5576  xpsnen  6976  dmaddpq  7562  dmmulpq  7563  eqreznegel  9805  xrnemnf  9969  xrnepnf  9970  elioopnf  10159  elioomnf  10160  elicopnf  10161  elxrge0  10170  dfrp2  10478  isprm2  12634  bj-sucexg  16243
  Copyright terms: Public domain W3C validator