ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr GIF version

Theorem poirr 4342
Description: A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poirr ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem poirr
StepHypRef Expression
1 df-3an 982 . . 3 ((𝐵𝐴𝐵𝐴𝐵𝐴) ↔ ((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴))
2 anabs1 572 . . 3 (((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴) ↔ (𝐵𝐴𝐵𝐴))
3 anidm 396 . . 3 ((𝐵𝐴𝐵𝐴) ↔ 𝐵𝐴)
41, 2, 33bitrri 207 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴𝐵𝐴))
5 pocl 4338 . . . 4 (𝑅 Po 𝐴 → ((𝐵𝐴𝐵𝐴𝐵𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵))))
65imp 124 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)))
76simpld 112 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → ¬ 𝐵𝑅𝐵)
84, 7sylan2b 287 1 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3a 980  wcel 2167   class class class wbr 4033   Po wpo 4329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-po 4331
This theorem is referenced by:  po2nr  4344  pofun  4347  sonr  4352  poirr2  5062  poxp  6290  swoer  6620  tridc  6960  fimax2gtrilemstep  6961
  Copyright terms: Public domain W3C validator