Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poirr | GIF version |
Description: A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poirr | ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴)) | |
2 | anabs1 562 | . . 3 ⊢ (((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝐵 ∈ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) | |
3 | anidm 394 | . . 3 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) ↔ 𝐵 ∈ 𝐴) | |
4 | 1, 2, 3 | 3bitrri 206 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) |
5 | pocl 4281 | . . . 4 ⊢ (𝑅 Po 𝐴 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵)))) | |
6 | 5 | imp 123 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵 ∧ 𝐵𝑅𝐵) → 𝐵𝑅𝐵))) |
7 | 6 | simpld 111 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴)) → ¬ 𝐵𝑅𝐵) |
8 | 4, 7 | sylan2b 285 | 1 ⊢ ((𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∧ w3a 968 ∈ wcel 2136 class class class wbr 3982 Po wpo 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-po 4274 |
This theorem is referenced by: po2nr 4287 pofun 4290 sonr 4295 poirr2 4996 poxp 6200 swoer 6529 tridc 6865 fimax2gtrilemstep 6866 |
Copyright terms: Public domain | W3C validator |