ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr GIF version

Theorem poirr 4285
Description: A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poirr ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem poirr
StepHypRef Expression
1 df-3an 970 . . 3 ((𝐵𝐴𝐵𝐴𝐵𝐴) ↔ ((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴))
2 anabs1 562 . . 3 (((𝐵𝐴𝐵𝐴) ∧ 𝐵𝐴) ↔ (𝐵𝐴𝐵𝐴))
3 anidm 394 . . 3 ((𝐵𝐴𝐵𝐴) ↔ 𝐵𝐴)
41, 2, 33bitrri 206 . 2 (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴𝐵𝐴))
5 pocl 4281 . . . 4 (𝑅 Po 𝐴 → ((𝐵𝐴𝐵𝐴𝐵𝐴) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵))))
65imp 123 . . 3 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → (¬ 𝐵𝑅𝐵 ∧ ((𝐵𝑅𝐵𝐵𝑅𝐵) → 𝐵𝑅𝐵)))
76simpld 111 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐵𝐴𝐵𝐴)) → ¬ 𝐵𝑅𝐵)
84, 7sylan2b 285 1 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  w3a 968  wcel 2136   class class class wbr 3982   Po wpo 4272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-po 4274
This theorem is referenced by:  po2nr  4287  pofun  4290  sonr  4295  poirr2  4996  poxp  6200  swoer  6529  tridc  6865  fimax2gtrilemstep  6866
  Copyright terms: Public domain W3C validator