| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomi | GIF version | ||
| Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
| Ref | Expression |
|---|---|
| bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bicomi | ⊢ (𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 an43 588 pm4.76 606 mtbir 675 sylnibr 681 sylnbir 683 xchnxbir 685 xchbinxr 687 nbn 704 pm4.25 763 pm4.56 785 pm4.77 804 pm3.2an3 1200 syl3anbr 1315 3an6 1356 truan 1412 truimfal 1452 nottru 1455 sbid 1820 sb10f 2046 cleljust 2206 eqabdv 2358 nfabdw 2391 necon3bbii 2437 rspc2gv 2919 alexeq 2929 ceqsrexbv 2934 clel2 2936 clel4 2939 dfsbcq2 3031 cbvreucsf 3189 dfdif3 3314 raldifb 3344 difab 3473 un0 3525 in0 3526 ss0b 3531 rexdifpr 3694 snssb 3801 snssg 3802 iindif2m 4033 epse 4433 abnex 4538 uniuni 4542 elco 4888 cotr 5110 issref 5111 mptpreima 5222 ralrnmpt 5777 rexrnmpt 5778 eroveu 6773 wrd2ind 11255 fprodseq 12094 issrg 13928 toptopon 14692 xmeterval 15109 txmetcnp 15192 dedekindicclemicc 15306 eldvap 15356 fsumdvdsmul 15665 if0ab 16169 bdeq 16186 bd0r 16188 bdcriota 16246 bj-d0clsepcl 16288 bj-dfom 16296 |
| Copyright terms: Public domain | W3C validator |