Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicomi | GIF version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
Ref | Expression |
---|---|
bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bicomi | ⊢ (𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bicom1 130 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpri 132 bitr2i 184 bitr3i 185 bitr4i 186 bitr3id 193 bitr3di 194 bitr4di 197 bitr4id 198 pm5.41 250 anidm 394 pm4.87 547 anabs1 562 anabs7 564 pm4.76 594 mtbir 661 sylnibr 667 sylnbir 669 xchnxbir 671 xchbinxr 673 nbn 689 pm4.25 748 pm4.56 770 pm4.77 789 pm3.2an3 1166 syl3anbr 1272 3an6 1312 truan 1360 truimfal 1400 nottru 1403 sbid 1762 sb10f 1983 cleljust 2142 nfabdw 2327 necon3bbii 2373 rspc2gv 2842 alexeq 2852 ceqsrexbv 2857 clel2 2859 clel4 2862 dfsbcq2 2954 cbvreucsf 3109 dfdif3 3232 raldifb 3262 difab 3391 un0 3442 in0 3443 ss0b 3448 rexdifpr 3604 iindif2m 3933 epse 4320 abnex 4425 uniuni 4429 elco 4770 cotr 4985 issref 4986 mptpreima 5097 ralrnmpt 5627 rexrnmpt 5628 eroveu 6592 fprodseq 11524 toptopon 12656 xmeterval 13075 txmetcnp 13158 dedekindicclemicc 13250 eldvap 13291 if0ab 13687 bdeq 13705 bd0r 13707 bdcriota 13765 bj-d0clsepcl 13807 bj-dfom 13815 |
Copyright terms: Public domain | W3C validator |