| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomi | GIF version | ||
| Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
| Ref | Expression |
|---|---|
| bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bicomi | ⊢ (𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 673 sylnibr 679 sylnbir 681 xchnxbir 683 xchbinxr 685 nbn 701 pm4.25 760 pm4.56 782 pm4.77 801 pm3.2an3 1179 syl3anbr 1294 3an6 1335 truan 1390 truimfal 1430 nottru 1433 sbid 1798 sb10f 2024 cleljust 2184 eqabdv 2336 nfabdw 2369 necon3bbii 2415 rspc2gv 2896 alexeq 2906 ceqsrexbv 2911 clel2 2913 clel4 2916 dfsbcq2 3008 cbvreucsf 3166 dfdif3 3291 raldifb 3321 difab 3450 un0 3502 in0 3503 ss0b 3508 rexdifpr 3671 snssb 3777 snssg 3778 iindif2m 4009 epse 4407 abnex 4512 uniuni 4516 elco 4862 cotr 5083 issref 5084 mptpreima 5195 ralrnmpt 5745 rexrnmpt 5746 eroveu 6736 wrd2ind 11214 fprodseq 12009 issrg 13842 toptopon 14605 xmeterval 15022 txmetcnp 15105 dedekindicclemicc 15219 eldvap 15269 fsumdvdsmul 15578 if0ab 15941 bdeq 15958 bd0r 15960 bdcriota 16018 bj-d0clsepcl 16060 bj-dfom 16068 |
| Copyright terms: Public domain | W3C validator |