| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomi | GIF version | ||
| Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
| Ref | Expression |
|---|---|
| bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bicomi | ⊢ (𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 672 sylnibr 678 sylnbir 680 xchnxbir 682 xchbinxr 684 nbn 700 pm4.25 759 pm4.56 781 pm4.77 800 pm3.2an3 1178 syl3anbr 1293 3an6 1333 truan 1381 truimfal 1421 nottru 1424 sbid 1788 sb10f 2014 cleljust 2173 eqabdv 2325 nfabdw 2358 necon3bbii 2404 rspc2gv 2880 alexeq 2890 ceqsrexbv 2895 clel2 2897 clel4 2900 dfsbcq2 2992 cbvreucsf 3149 dfdif3 3274 raldifb 3304 difab 3433 un0 3485 in0 3486 ss0b 3491 rexdifpr 3651 snssb 3756 snssg 3757 iindif2m 3985 epse 4378 abnex 4483 uniuni 4487 elco 4833 cotr 5052 issref 5053 mptpreima 5164 ralrnmpt 5707 rexrnmpt 5708 eroveu 6694 fprodseq 11765 issrg 13597 toptopon 14338 xmeterval 14755 txmetcnp 14838 dedekindicclemicc 14952 eldvap 15002 fsumdvdsmul 15311 if0ab 15535 bdeq 15553 bd0r 15555 bdcriota 15613 bj-d0clsepcl 15655 bj-dfom 15663 |
| Copyright terms: Public domain | W3C validator |