![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomi | GIF version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
Ref | Expression |
---|---|
bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bicomi | ⊢ (𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 672 sylnibr 678 sylnbir 680 xchnxbir 682 xchbinxr 684 nbn 700 pm4.25 759 pm4.56 781 pm4.77 800 pm3.2an3 1178 syl3anbr 1293 3an6 1333 truan 1381 truimfal 1421 nottru 1424 sbid 1785 sb10f 2011 cleljust 2170 eqabdv 2322 nfabdw 2355 necon3bbii 2401 rspc2gv 2876 alexeq 2886 ceqsrexbv 2891 clel2 2893 clel4 2896 dfsbcq2 2988 cbvreucsf 3145 dfdif3 3269 raldifb 3299 difab 3428 un0 3480 in0 3481 ss0b 3486 rexdifpr 3646 snssb 3751 snssg 3752 iindif2m 3980 epse 4373 abnex 4478 uniuni 4482 elco 4828 cotr 5047 issref 5048 mptpreima 5159 ralrnmpt 5700 rexrnmpt 5701 eroveu 6680 fprodseq 11726 issrg 13461 toptopon 14186 xmeterval 14603 txmetcnp 14686 dedekindicclemicc 14786 eldvap 14836 if0ab 15297 bdeq 15315 bd0r 15317 bdcriota 15375 bj-d0clsepcl 15417 bj-dfom 15425 |
Copyright terms: Public domain | W3C validator |