Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicomi | GIF version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
Ref | Expression |
---|---|
bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bicomi | ⊢ (𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 671 sylnibr 677 sylnbir 679 xchnxbir 681 xchbinxr 683 nbn 699 pm4.25 758 pm4.56 780 pm4.77 799 pm3.2an3 1176 syl3anbr 1282 3an6 1322 truan 1370 truimfal 1410 nottru 1413 sbid 1772 sb10f 1993 cleljust 2152 nfabdw 2336 necon3bbii 2382 rspc2gv 2851 alexeq 2861 ceqsrexbv 2866 clel2 2868 clel4 2871 dfsbcq2 2963 cbvreucsf 3119 dfdif3 3243 raldifb 3273 difab 3402 un0 3454 in0 3455 ss0b 3460 rexdifpr 3617 snssb 3722 snssg 3723 iindif2m 3949 epse 4336 abnex 4441 uniuni 4445 elco 4786 cotr 5002 issref 5003 mptpreima 5114 ralrnmpt 5650 rexrnmpt 5651 eroveu 6616 fprodseq 11557 issrg 12941 toptopon 13067 xmeterval 13486 txmetcnp 13569 dedekindicclemicc 13661 eldvap 13702 if0ab 14097 bdeq 14115 bd0r 14117 bdcriota 14175 bj-d0clsepcl 14217 bj-dfom 14225 |
Copyright terms: Public domain | W3C validator |