| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomi | GIF version | ||
| Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
| Ref | Expression |
|---|---|
| bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bicomi | ⊢ (𝜓 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 673 sylnibr 679 sylnbir 681 xchnxbir 683 xchbinxr 685 nbn 701 pm4.25 760 pm4.56 782 pm4.77 801 pm3.2an3 1179 syl3anbr 1294 3an6 1335 truan 1390 truimfal 1430 nottru 1433 sbid 1797 sb10f 2023 cleljust 2182 eqabdv 2334 nfabdw 2367 necon3bbii 2413 rspc2gv 2889 alexeq 2899 ceqsrexbv 2904 clel2 2906 clel4 2909 dfsbcq2 3001 cbvreucsf 3158 dfdif3 3283 raldifb 3313 difab 3442 un0 3494 in0 3495 ss0b 3500 rexdifpr 3661 snssb 3766 snssg 3767 iindif2m 3995 epse 4390 abnex 4495 uniuni 4499 elco 4845 cotr 5065 issref 5066 mptpreima 5177 ralrnmpt 5724 rexrnmpt 5725 eroveu 6715 fprodseq 11927 issrg 13760 toptopon 14523 xmeterval 14940 txmetcnp 15023 dedekindicclemicc 15137 eldvap 15187 fsumdvdsmul 15496 if0ab 15778 bdeq 15796 bd0r 15798 bdcriota 15856 bj-d0clsepcl 15898 bj-dfom 15906 |
| Copyright terms: Public domain | W3C validator |