![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomi | GIF version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
Ref | Expression |
---|---|
bicomi.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bicomi | ⊢ (𝜓 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | bicom1 131 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpri 133 bitr2i 185 bitr3i 186 bitr4i 187 bitr3id 194 bitr3di 195 bitr4di 198 bitr4id 199 pm5.41 251 anidm 396 an21 471 pm4.87 557 anabs1 572 anabs7 574 pm4.76 604 mtbir 671 sylnibr 677 sylnbir 679 xchnxbir 681 xchbinxr 683 nbn 699 pm4.25 758 pm4.56 780 pm4.77 799 pm3.2an3 1176 syl3anbr 1282 3an6 1322 truan 1370 truimfal 1410 nottru 1413 sbid 1774 sb10f 1995 cleljust 2154 nfabdw 2338 necon3bbii 2384 rspc2gv 2855 alexeq 2865 ceqsrexbv 2870 clel2 2872 clel4 2875 dfsbcq2 2967 cbvreucsf 3123 dfdif3 3247 raldifb 3277 difab 3406 un0 3458 in0 3459 ss0b 3464 rexdifpr 3622 snssb 3727 snssg 3728 iindif2m 3956 epse 4344 abnex 4449 uniuni 4453 elco 4795 cotr 5012 issref 5013 mptpreima 5124 ralrnmpt 5660 rexrnmpt 5661 eroveu 6628 fprodseq 11593 issrg 13153 toptopon 13603 xmeterval 14020 txmetcnp 14103 dedekindicclemicc 14195 eldvap 14236 if0ab 14642 bdeq 14660 bd0r 14662 bdcriota 14720 bj-d0clsepcl 14762 bj-dfom 14770 |
Copyright terms: Public domain | W3C validator |