Theorem List for Intuitionistic Logic Explorer - 501-600 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | ad9antr 501 |
Deduction adding 9 conjuncts to antecedent. (Contributed by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
|
Theorem | ad9antlr 502 |
Deduction adding 9 conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
|
Theorem | ad10antr 503 |
Deduction adding 10 conjuncts to antecedent. (Contributed by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓) |
|
Theorem | ad10antlr 504 |
Deduction adding 10 conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((((((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓) |
|
Theorem | ad2ant2l 505 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
8-Jan-2006.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
|
Theorem | ad2ant2r 506 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
8-Jan-2006.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
|
Theorem | ad2ant2lr 507 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
23-Nov-2007.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
|
Theorem | ad2ant2rl 508 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
24-Nov-2007.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
|
Theorem | adantl3r 509 |
Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare,
17-Oct-2017.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
|
Theorem | ad4ant13 510 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
|
Theorem | ad4ant14 511 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
|
Theorem | ad4ant23 512 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
|
Theorem | ad4ant24 513 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
|
Theorem | adantl4r 514 |
Deduction adding 1 conjunct to antecedent. (Contributed by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ (((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) ⇒ ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
|
Theorem | ad5ant12 515 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant13 516 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant14 517 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant15 518 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
|
Theorem | ad5ant23 519 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant24 520 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant25 521 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
|
Theorem | adantl5r 522 |
Deduction adding 1 conjunct to antecedent. (Contributed by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) ⇒ ⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
|
Theorem | adantl6r 523 |
Deduction adding 1 conjunct to antecedent. (Contributed by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) ⇒ ⊢ ((((((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
|
Theorem | simpll 524 |
Simplification of a conjunction. (Contributed by NM, 18-Mar-2007.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) |
|
Theorem | simplr 525 |
Simplification of a conjunction. (Contributed by NM, 20-Mar-2007.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) |
|
Theorem | simprl 526 |
Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜓) |
|
Theorem | simprr 527 |
Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜒) |
|
Theorem | simplll 528 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑) |
|
Theorem | simpllr 529 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) |
|
Theorem | simplrl 530 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜓) |
|
Theorem | simplrr 531 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜒) |
|
Theorem | simprll 532 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
|
Theorem | simprlr 533 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
|
Theorem | simprrl 534 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜒) |
|
Theorem | simprrr 535 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜃) |
|
Theorem | simp-4l 536 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
|
Theorem | simp-4r 537 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
|
Theorem | simp-5l 538 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
|
Theorem | simp-5r 539 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
|
Theorem | simp-6l 540 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑) |
|
Theorem | simp-6r 541 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
|
Theorem | simp-7l 542 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜑) |
|
Theorem | simp-7r 543 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
|
Theorem | simp-8l 544 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜑) |
|
Theorem | simp-8r 545 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
|
Theorem | simp-9l 546 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜑) |
|
Theorem | simp-9r 547 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
|
Theorem | simp-10l 548 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜑) |
|
Theorem | simp-10r 549 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
|
Theorem | simp-11l 550 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜑) |
|
Theorem | simp-11r 551 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓) |
|
Theorem | pm4.87 552 |
Theorem *4.87 of [WhiteheadRussell] p.
122. (Contributed by NM,
3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.)
|
⊢ (((((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) ∧ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒)))) ∧ ((𝜓 → (𝜑 → 𝜒)) ↔ ((𝜓 ∧ 𝜑) → 𝜒))) |
|
Theorem | a2and 553 |
Deduction distributing a conjunction as embedded antecedent.
(Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen,
19-Jan-2020.)
|
⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) & ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) ⇒ ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
|
Theorem | animpimp2impd 554 |
Deduction deriving nested implications from conjunctions. (Contributed
by AV, 21-Aug-2022.)
|
⊢ ((𝜓 ∧ 𝜑) → (𝜒 → (𝜃 → 𝜂))) & ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → (𝜂 → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → (𝜃 → 𝜏)))) |
|
Theorem | abai 555 |
Introduce one conjunct as an antecedent to the other. "abai" stands
for
"and, biconditional, and, implication". (Contributed by NM,
12-Aug-1993.)
(Proof shortened by Wolf Lammen, 7-Dec-2012.)
|
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝜑 → 𝜓))) |
|
Theorem | an12 556 |
Swap two conjuncts. Note that the first digit (1) in the label refers to
the outer conjunct position, and the next digit (2) to the inner conjunct
position. (Contributed by NM, 12-Mar-1995.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
|
Theorem | an32 557 |
A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof
shortened by Wolf Lammen, 25-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
|
Theorem | an13 558 |
A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof
shortened by Wolf Lammen, 31-Dec-2012.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) |
|
Theorem | an31 559 |
A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof
shortened by Wolf Lammen, 31-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
|
Theorem | an12s 560 |
Swap two conjuncts in antecedent. The label suffix "s" means that
an12 556 is combined with syl 14 (or
a variant). (Contributed by NM,
13-Mar-1996.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
|
Theorem | ancom2s 561 |
Inference commuting a nested conjunction in antecedent. (Contributed by
NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
|
Theorem | an13s 562 |
Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) |
|
Theorem | an32s 563 |
Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
|
Theorem | ancom1s 564 |
Inference commuting a nested conjunction in antecedent. (Contributed by
NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
|
Theorem | an31s 565 |
Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) |
|
Theorem | anass1rs 566 |
Commutative-associative law for conjunction in an antecedent.
(Contributed by Jeff Madsen, 19-Jun-2011.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
|
Theorem | anabs1 567 |
Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.)
(Proof shortened by Wolf Lammen, 16-Nov-2013.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) |
|
Theorem | anabs5 568 |
Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.)
(Proof shortened by Wolf Lammen, 9-Dec-2012.)
|
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
|
Theorem | anabs7 569 |
Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.)
(Proof shortened by Wolf Lammen, 17-Nov-2013.)
|
⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
|
Theorem | anabsan 570 |
Absorption of antecedent with conjunction. (Contributed by NM,
24-Mar-1996.) (Revised by NM, 18-Nov-2013.)
|
⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss1 571 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss4 572 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.)
|
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss5 573 |
Absorption of antecedent into conjunction. (Contributed by NM,
10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
|
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi5 574 |
Absorption of antecedent into conjunction. (Contributed by NM,
11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
|
⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi6 575 |
Absorption of antecedent into conjunction. (Contributed by NM,
14-Aug-2000.)
|
⊢ (𝜑 → ((𝜓 ∧ 𝜑) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi7 576 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
|
⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi8 577 |
Absorption of antecedent into conjunction. (Contributed by NM,
26-Sep-1999.)
|
⊢ (𝜓 → ((𝜓 ∧ 𝜑) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss7 578 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 19-Nov-2013.)
|
⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsan2 579 |
Absorption of antecedent with conjunction. (Contributed by NM,
10-May-2004.) (Revised by NM, 1-Jan-2013.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss3 580 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | an4 581 |
Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
|
Theorem | an42 582 |
Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
|
Theorem | an4s 583 |
Inference rearranging 4 conjuncts in antecedent. (Contributed by NM,
10-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
|
Theorem | an42s 584 |
Inference rearranging 4 conjuncts in antecedent. (Contributed by NM,
10-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
|
Theorem | anandi 585 |
Distribution of conjunction over conjunction. (Contributed by NM,
14-Aug-1995.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
|
Theorem | anandir 586 |
Distribution of conjunction over conjunction. (Contributed by NM,
24-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) |
|
Theorem | anandis 587 |
Inference that undistributes conjunction in the antecedent.
(Contributed by NM, 7-Jun-2004.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
|
Theorem | anandirs 588 |
Inference that undistributes conjunction in the antecedent.
(Contributed by NM, 7-Jun-2004.)
|
⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
|
Theorem | syl2an2 589 |
syl2an 287 with antecedents in standard conjunction form.
(Contributed by
Alan Sare, 27-Aug-2016.)
|
⊢ (𝜑 → 𝜓)
& ⊢ ((𝜒 ∧ 𝜑) → 𝜃)
& ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
|
Theorem | syl2an2r 590 |
syl2anr 288 with antecedents in standard conjunction form.
(Contributed
by Alan Sare, 27-Aug-2016.)
|
⊢ (𝜑 → 𝜓)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜃)
& ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
|
Theorem | impbida 591 |
Deduce an equivalence from two implications. (Contributed by NM,
17-Feb-2007.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
|
Theorem | pm3.45 592 |
Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed
by NM,
3-Jan-2005.)
|
⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
|
Theorem | im2anan9 593 |
Deduction joining nested implications to form implication of
conjunctions. (Contributed by NM, 29-Feb-1996.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
|
Theorem | im2anan9r 594 |
Deduction joining nested implications to form implication of
conjunctions. (Contributed by NM, 29-Feb-1996.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
|
Theorem | anim12dan 595 |
Conjoin antecedents and consequents in a deduction. (Contributed by
Mario Carneiro, 12-May-2014.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒)
& ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
|
Theorem | pm5.1 596 |
Two propositions are equivalent if they are both true. Theorem *5.1 of
[WhiteheadRussell] p. 123.
(Contributed by NM, 21-May-1994.)
|
⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ 𝜓)) |
|
Theorem | pm3.43 597 |
Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed
by NM,
3-Jan-2005.) (Revised by NM, 27-Nov-2013.)
|
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) |
|
Theorem | jcab 598 |
Distributive law for implication over conjunction. Compare Theorem *4.76
of [WhiteheadRussell] p. 121.
(Contributed by NM, 3-Apr-1994.) (Proof
shortened by Wolf Lammen, 27-Nov-2013.)
|
⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
|
Theorem | pm4.76 599 |
Theorem *4.76 of [WhiteheadRussell] p.
121. (Contributed by NM,
3-Jan-2005.)
|
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
|
Theorem | pm4.38 600 |
Theorem *4.38 of [WhiteheadRussell] p.
118. (Contributed by NM,
3-Jan-2005.)
|
⊢ (((𝜑 ↔ 𝜒) ∧ (𝜓 ↔ 𝜃)) → ((𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) |