Theorem List for Intuitionistic Logic Explorer - 501-600 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | ad7antlr 501 |
Deduction adding 7 conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
|
Theorem | ad8antr 502 |
Deduction adding 8 conjuncts to antecedent. (Contributed by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
|
Theorem | ad8antlr 503 |
Deduction adding 8 conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
|
Theorem | ad9antr 504 |
Deduction adding 9 conjuncts to antecedent. (Contributed by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
|
Theorem | ad9antlr 505 |
Deduction adding 9 conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
|
Theorem | ad10antr 506 |
Deduction adding 10 conjuncts to antecedent. (Contributed by Mario
Carneiro, 4-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓) |
|
Theorem | ad10antlr 507 |
Deduction adding 10 conjuncts to antecedent. (Contributed by Mario
Carneiro, 5-Jan-2017.)
|
⊢ (𝜑 → 𝜓) ⇒ ⊢ (((((((((((𝜒 ∧ 𝜑) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓) |
|
Theorem | ad2ant2l 508 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
8-Jan-2006.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
|
Theorem | ad2ant2r 509 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
8-Jan-2006.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
|
Theorem | ad2ant2lr 510 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
23-Nov-2007.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜃 ∧ 𝜑) ∧ (𝜓 ∧ 𝜏)) → 𝜒) |
|
Theorem | ad2ant2rl 511 |
Deduction adding two conjuncts to antecedent. (Contributed by NM,
24-Nov-2007.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜏 ∧ 𝜓)) → 𝜒) |
|
Theorem | adantl3r 512 |
Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare,
17-Oct-2017.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜑 ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
|
Theorem | ad4ant13 513 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
|
Theorem | ad4ant14 514 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
|
Theorem | ad4ant23 515 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
|
Theorem | ad4ant24 516 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) → 𝜒) |
|
Theorem | adantl4r 517 |
Deduction adding 1 conjunct to antecedent. (Contributed by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ (((((𝜑 ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) ⇒ ⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
|
Theorem | ad5ant12 518 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant13 519 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant14 520 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant15 521 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜑 ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
|
Theorem | ad5ant23 522 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant24 523 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) → 𝜒) |
|
Theorem | ad5ant25 524 |
Deduction adding conjuncts to antecedent. (Contributed by Alan Sare,
17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((((𝜃 ∧ 𝜑) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜒) |
|
Theorem | adantl5r 525 |
Deduction adding 1 conjunct to antecedent. (Contributed by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ ((((((𝜑 ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) ⇒ ⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
|
Theorem | adantl6r 526 |
Deduction adding 1 conjunct to antecedent. (Contributed by Thierry
Arnoux, 11-Feb-2018.)
|
⊢ (((((((𝜑 ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) ⇒ ⊢ ((((((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜅) |
|
Theorem | simpll 527 |
Simplification of a conjunction. (Contributed by NM, 18-Mar-2007.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) |
|
Theorem | simplr 528 |
Simplification of a conjunction. (Contributed by NM, 20-Mar-2007.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) |
|
Theorem | simprl 529 |
Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜓) |
|
Theorem | simprld 530 |
Deduction eliminating a double conjunct. (Contributed by Glauco
Siliprandi, 11-Dec-2019.)
|
⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → 𝜒) |
|
Theorem | simprr 531 |
Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜒) |
|
Theorem | simprrd 532 |
Deduction form of simprr 531, eliminating a double conjunct.
(Contributed by Glauco Siliprandi, 11-Dec-2019.)
|
⊢ (𝜑 → (𝜓 ∧ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → 𝜃) |
|
Theorem | simplll 533 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑) |
|
Theorem | simpllr 534 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) |
|
Theorem | simplrl 535 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜓) |
|
Theorem | simplrr 536 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜒) |
|
Theorem | simprll 537 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜓) |
|
Theorem | simprlr 538 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ ((𝜓 ∧ 𝜒) ∧ 𝜃)) → 𝜒) |
|
Theorem | simprrl 539 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜒) |
|
Theorem | simprrr 540 |
Simplification of a conjunction. (Contributed by Jeff Hankins,
28-Jul-2009.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) → 𝜃) |
|
Theorem | simp-4l 541 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑) |
|
Theorem | simp-4r 542 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
|
Theorem | simp-5l 543 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
|
Theorem | simp-5r 544 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
|
Theorem | simp-6l 545 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜑) |
|
Theorem | simp-6r 546 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
|
Theorem | simp-7l 547 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜑) |
|
Theorem | simp-7r 548 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜓) |
|
Theorem | simp-8l 549 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜑) |
|
Theorem | simp-8r 550 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) → 𝜓) |
|
Theorem | simp-9l 551 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜑) |
|
Theorem | simp-9r 552 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) → 𝜓) |
|
Theorem | simp-10l 553 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜑) |
|
Theorem | simp-10r 554 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ (((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) → 𝜓) |
|
Theorem | simp-11l 555 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜑) |
|
Theorem | simp-11r 556 |
Simplification of a conjunction. (Contributed by Mario Carneiro,
4-Jan-2017.)
|
⊢ ((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) → 𝜓) |
|
Theorem | pm4.87 557 |
Theorem *4.87 of [WhiteheadRussell] p.
122. (Contributed by NM,
3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.)
|
⊢ (((((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) ∧ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒)))) ∧ ((𝜓 → (𝜑 → 𝜒)) ↔ ((𝜓 ∧ 𝜑) → 𝜒))) |
|
Theorem | a2and 558 |
Deduction distributing a conjunction as embedded antecedent.
(Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen,
19-Jan-2020.)
|
⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) & ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) ⇒ ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
|
Theorem | animpimp2impd 559 |
Deduction deriving nested implications from conjunctions. (Contributed
by AV, 21-Aug-2022.)
|
⊢ ((𝜓 ∧ 𝜑) → (𝜒 → (𝜃 → 𝜂))) & ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → (𝜂 → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → (𝜃 → 𝜏)))) |
|
Theorem | abai 560 |
Introduce one conjunct as an antecedent to the other. "abai" stands
for
"and, biconditional, and, implication". (Contributed by NM,
12-Aug-1993.)
(Proof shortened by Wolf Lammen, 7-Dec-2012.)
|
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝜑 → 𝜓))) |
|
Theorem | an12 561 |
Swap two conjuncts. Note that the first digit (1) in the label refers to
the outer conjunct position, and the next digit (2) to the inner conjunct
position. (Contributed by NM, 12-Mar-1995.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
|
Theorem | an32 562 |
A rearrangement of conjuncts. (Contributed by NM, 12-Mar-1995.) (Proof
shortened by Wolf Lammen, 25-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜓)) |
|
Theorem | an13 563 |
A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof
shortened by Wolf Lammen, 31-Dec-2012.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜑))) |
|
Theorem | an31 564 |
A rearrangement of conjuncts. (Contributed by NM, 24-Jun-2012.) (Proof
shortened by Wolf Lammen, 31-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) |
|
Theorem | an12s 565 |
Swap two conjuncts in antecedent. The label suffix "s" means that
an12 561 is combined with syl 14 (or
a variant). (Contributed by NM,
13-Mar-1996.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
|
Theorem | ancom2s 566 |
Inference commuting a nested conjunction in antecedent. (Contributed by
NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
|
Theorem | an13s 567 |
Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑)) → 𝜃) |
|
Theorem | an32s 568 |
Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
|
Theorem | ancom1s 569 |
Inference commuting a nested conjunction in antecedent. (Contributed by
NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) → 𝜃) |
|
Theorem | an31s 570 |
Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) |
|
Theorem | anass1rs 571 |
Commutative-associative law for conjunction in an antecedent.
(Contributed by Jeff Madsen, 19-Jun-2011.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜓) → 𝜃) |
|
Theorem | anabs1 572 |
Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995.)
(Proof shortened by Wolf Lammen, 16-Nov-2013.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) ↔ (𝜑 ∧ 𝜓)) |
|
Theorem | anabs5 573 |
Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.)
(Proof shortened by Wolf Lammen, 9-Dec-2012.)
|
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
|
Theorem | anabs7 574 |
Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.)
(Proof shortened by Wolf Lammen, 17-Nov-2013.)
|
⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
|
Theorem | anabsan 575 |
Absorption of antecedent with conjunction. (Contributed by NM,
24-Mar-1996.) (Revised by NM, 18-Nov-2013.)
|
⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss1 576 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 31-Dec-2012.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss4 577 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.)
|
⊢ (((𝜓 ∧ 𝜑) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss5 578 |
Absorption of antecedent into conjunction. (Contributed by NM,
10-May-1994.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
|
⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi5 579 |
Absorption of antecedent into conjunction. (Contributed by NM,
11-Jun-1995.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
|
⊢ (𝜑 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi6 580 |
Absorption of antecedent into conjunction. (Contributed by NM,
14-Aug-2000.)
|
⊢ (𝜑 → ((𝜓 ∧ 𝜑) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi7 581 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 18-Nov-2013.)
|
⊢ (𝜓 → ((𝜑 ∧ 𝜓) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsi8 582 |
Absorption of antecedent into conjunction. (Contributed by NM,
26-Sep-1999.)
|
⊢ (𝜓 → ((𝜓 ∧ 𝜑) → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss7 583 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 19-Nov-2013.)
|
⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabsan2 584 |
Absorption of antecedent with conjunction. (Contributed by NM,
10-May-2004.) (Revised by NM, 1-Jan-2013.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | anabss3 585 |
Absorption of antecedent into conjunction. (Contributed by NM,
20-Jul-1996.) (Proof shortened by Wolf Lammen, 1-Jan-2013.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
|
Theorem | an4 586 |
Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
|
Theorem | an42 587 |
Rearrangement of 4 conjuncts. (Contributed by NM, 7-Feb-1996.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓))) |
|
Theorem | an4s 588 |
Inference rearranging 4 conjuncts in antecedent. (Contributed by NM,
10-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
|
Theorem | an42s 589 |
Inference rearranging 4 conjuncts in antecedent. (Contributed by NM,
10-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
|
Theorem | anandi 590 |
Distribution of conjunction over conjunction. (Contributed by NM,
14-Aug-1995.)
|
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒))) |
|
Theorem | anandir 591 |
Distribution of conjunction over conjunction. (Contributed by NM,
24-Aug-1995.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒))) |
|
Theorem | anandis 592 |
Inference that undistributes conjunction in the antecedent.
(Contributed by NM, 7-Jun-2004.)
|
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
|
Theorem | anandirs 593 |
Inference that undistributes conjunction in the antecedent.
(Contributed by NM, 7-Jun-2004.)
|
⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
|
Theorem | syl2an2 594 |
syl2an 289 with antecedents in standard conjunction form.
(Contributed by
Alan Sare, 27-Aug-2016.)
|
⊢ (𝜑 → 𝜓)
& ⊢ ((𝜒 ∧ 𝜑) → 𝜃)
& ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
|
Theorem | syl2an2r 595 |
syl2anr 290 with antecedents in standard conjunction form.
(Contributed
by Alan Sare, 27-Aug-2016.)
|
⊢ (𝜑 → 𝜓)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜃)
& ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
|
Theorem | impbida 596 |
Deduce an equivalence from two implications. (Contributed by NM,
17-Feb-2007.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒)
& ⊢ ((𝜑 ∧ 𝜒) → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
|
Theorem | pm3.45 597 |
Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed
by NM,
3-Jan-2005.)
|
⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
|
Theorem | im2anan9 598 |
Deduction joining nested implications to form implication of
conjunctions. (Contributed by NM, 29-Feb-1996.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
|
Theorem | im2anan9r 599 |
Deduction joining nested implications to form implication of
conjunctions. (Contributed by NM, 29-Feb-1996.)
|
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜂)) ⇒ ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) |
|
Theorem | anim12dan 600 |
Conjoin antecedents and consequents in a deduction. (Contributed by
Mario Carneiro, 12-May-2014.)
|
⊢ ((𝜑 ∧ 𝜓) → 𝜒)
& ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |