| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anbi2 | GIF version | ||
| Description: Introduce a left conjunct to both sides of a logical equivalence. (Contributed by NM, 16-Nov-2013.) |
| Ref | Expression |
|---|---|
| anbi2 | ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | anbi2d 464 | 1 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∧ 𝜑) ↔ (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifbi 3581 |
| Copyright terms: Public domain | W3C validator |