ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbi GIF version

Theorem ifbi 3540
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.)
Assertion
Ref Expression
ifbi ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifbi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 anbi2 463 . . . 4 ((𝜑𝜓) → ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓)))
2 notbi 656 . . . . 5 ((𝜑𝜓) → (¬ 𝜑 ↔ ¬ 𝜓))
32anbi2d 460 . . . 4 ((𝜑𝜓) → ((𝑥𝐵 ∧ ¬ 𝜑) ↔ (𝑥𝐵 ∧ ¬ 𝜓)))
41, 3orbi12d 783 . . 3 ((𝜑𝜓) → (((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥𝐴𝜓) ∨ (𝑥𝐵 ∧ ¬ 𝜓))))
54abbidv 2284 . 2 ((𝜑𝜓) → {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥𝐴𝜓) ∨ (𝑥𝐵 ∧ ¬ 𝜓))})
6 df-if 3521 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
7 df-if 3521 . 2 if(𝜓, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜓) ∨ (𝑥𝐵 ∧ ¬ 𝜓))}
85, 6, 73eqtr4g 2224 1 ((𝜑𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  {cab 2151  ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-if 3521
This theorem is referenced by:  ifbid  3541  ifbieq2i  3543  fodjuomni  7113  fodjumkv  7124  1tonninf  10375  lgsdi  13578  nninfsellemqall  13895  nninfomni  13899
  Copyright terms: Public domain W3C validator