| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbi | GIF version | ||
| Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| Ref | Expression |
|---|---|
| ifbi | ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi2 467 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 2 | notbi 670 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 2 | anbi2d 464 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))) |
| 4 | 1, 3 | orbi12d 797 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓)))) |
| 5 | 4 | abbidv 2327 | . 2 ⊢ ((𝜑 ↔ 𝜓) → {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))}) |
| 6 | df-if 3583 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 7 | df-if 3583 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))} | |
| 8 | 5, 6, 7 | 3eqtr4g 2267 | 1 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 {cab 2195 ifcif 3582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-if 3583 |
| This theorem is referenced by: ifbid 3604 ifbieq2i 3606 ifnebibdc 3628 fodjuomni 7284 fodjumkv 7295 nninfwlpoimlemg 7310 1tonninf 10630 lgsdi 15681 nninfsellemqall 16292 nninfomni 16296 |
| Copyright terms: Public domain | W3C validator |