| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbi | GIF version | ||
| Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004.) |
| Ref | Expression |
|---|---|
| ifbi | ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anbi2 467 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓))) | |
| 2 | notbi 668 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
| 3 | 2 | anbi2d 464 | . . . 4 ⊢ ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))) |
| 4 | 1, 3 | orbi12d 795 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓)))) |
| 5 | 4 | abbidv 2324 | . 2 ⊢ ((𝜑 ↔ 𝜓) → {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))}) |
| 6 | df-if 3573 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 7 | df-if 3573 | . 2 ⊢ if(𝜓, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜓) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜓))} | |
| 8 | 5, 6, 7 | 3eqtr4g 2264 | 1 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐴, 𝐵) = if(𝜓, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 {cab 2192 ifcif 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-if 3573 |
| This theorem is referenced by: ifbid 3593 ifbieq2i 3595 ifnebibdc 3616 fodjuomni 7258 fodjumkv 7269 nninfwlpoimlemg 7284 1tonninf 10593 lgsdi 15558 nninfsellemqall 16026 nninfomni 16030 |
| Copyright terms: Public domain | W3C validator |