ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addcl GIF version

Axiom ax-addcl 8063
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 8019. Proofs should normally use addcl 8092 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-addcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7965 . . . 4 class
31, 2wcel 2180 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2180 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 caddc 7970 . . . 4 class +
81, 4, 7co 5974 . . 3 class (𝐴 + 𝐵)
98, 2wcel 2180 . 2 wff (𝐴 + 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
Colors of variables: wff set class
This axiom is referenced by:  addcl  8092
  Copyright terms: Public domain W3C validator