ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addcl GIF version

Axiom ax-addcl 8103
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 8059. Proofs should normally use addcl 8132 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-addcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 8005 . . . 4 class
31, 2wcel 2200 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2200 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 caddc 8010 . . . 4 class +
81, 4, 7co 6007 . . 3 class (𝐴 + 𝐵)
98, 2wcel 2200 . 2 wff (𝐴 + 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
Colors of variables: wff set class
This axiom is referenced by:  addcl  8132
  Copyright terms: Public domain W3C validator