Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addcl | GIF version |
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7838. Proofs should normally use addcl 7911 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7784 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2146 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2146 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 7789 | . . . 4 class + | |
8 | 1, 4, 7 | co 5865 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2146 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
This axiom is referenced by: addcl 7911 |
Copyright terms: Public domain | W3C validator |