| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-addcl | GIF version | ||
| Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 8059. Proofs should normally use addcl 8132 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 8005 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2200 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2200 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
| 7 | caddc 8010 | . . . 4 class + | |
| 8 | 1, 4, 7 | co 6007 | . . 3 class (𝐴 + 𝐵) |
| 9 | 8, 2 | wcel 2200 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
| 10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| This axiom is referenced by: addcl 8132 |
| Copyright terms: Public domain | W3C validator |