Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addcl | GIF version |
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7805. Proofs should normally use addcl 7878 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7751 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2136 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2136 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 7756 | . . . 4 class + | |
8 | 1, 4, 7 | co 5842 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2136 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
This axiom is referenced by: addcl 7878 |
Copyright terms: Public domain | W3C validator |