![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-addcl | GIF version |
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7924. Proofs should normally use addcl 7997 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7870 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2164 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2164 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 7875 | . . . 4 class + | |
8 | 1, 4, 7 | co 5918 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2164 | . 2 wff (𝐴 + 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
This axiom is referenced by: addcl 7997 |
Copyright terms: Public domain | W3C validator |