![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-icn | GIF version |
Description: i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7861. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7812 | . 2 class i | |
2 | cc 7808 | . 2 class ℂ | |
3 | 1, 2 | wcel 2148 | 1 wff i ∈ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7948 mulrid 7953 cnegexlem2 8132 cnegex 8134 0cnALT 8146 negicn 8157 ine0 8350 ixi 8539 rimul 8541 rereim 8542 apreap 8543 cru 8558 apreim 8559 mulreim 8560 apadd1 8564 apneg 8567 aprcl 8602 aptap 8606 recextlem1 8607 recexaplem2 8608 recexap 8609 crap0 8914 cju 8917 it0e0 9139 2mulicn 9140 iap0 9141 2muliap0 9142 cnref1o 9649 irec 10619 i2 10620 i3 10621 i4 10622 iexpcyc 10624 imval 10858 imre 10859 reim 10860 crre 10865 crim 10866 remim 10868 mulreap 10872 cjreb 10874 recj 10875 reneg 10876 readd 10877 remullem 10879 imcj 10883 imneg 10884 imadd 10885 cjadd 10892 cjneg 10898 imval2 10902 rei 10907 imi 10908 cji 10910 cjreim 10911 cjreim2 10912 cjap 10914 cnrecnv 10918 rennim 11010 absi 11067 absreimsq 11075 absreim 11076 absimle 11092 climcvg1nlem 11356 sinval 11709 cosval 11710 sinf 11711 cosf 11712 tanval2ap 11720 tanval3ap 11721 resinval 11722 recosval 11723 efi4p 11724 resin4p 11725 recos4p 11726 resincl 11727 recoscl 11728 sinneg 11733 cosneg 11734 efival 11739 efmival 11740 efeul 11741 sinadd 11743 cosadd 11744 ef01bndlem 11763 sin01bnd 11764 cos01bnd 11765 absef 11776 absefib 11777 efieq1re 11778 demoivre 11779 demoivreALT 11780 igz 12371 cnrehmeocntop 14063 sincn 14160 coscn 14161 efhalfpi 14190 ef2kpi 14197 efper 14198 sinperlem 14199 efimpi 14210 2sqlem2 14432 qdencn 14745 |
Copyright terms: Public domain | W3C validator |