Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-icn | GIF version |
Description: i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7800. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7751 | . 2 class i | |
2 | cc 7747 | . 2 class ℂ | |
3 | 1, 2 | wcel 2136 | 1 wff i ∈ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7887 mulid1 7892 cnegexlem2 8070 cnegex 8072 0cnALT 8084 negicn 8095 ine0 8288 ixi 8477 rimul 8479 rereim 8480 apreap 8481 cru 8496 apreim 8497 mulreim 8498 apadd1 8502 apneg 8505 aprcl 8540 recextlem1 8544 recexaplem2 8545 recexap 8546 crap0 8849 cju 8852 it0e0 9074 2mulicn 9075 iap0 9076 2muliap0 9077 cnref1o 9584 irec 10550 i2 10551 i3 10552 i4 10553 iexpcyc 10555 imval 10788 imre 10789 reim 10790 crre 10795 crim 10796 remim 10798 mulreap 10802 cjreb 10804 recj 10805 reneg 10806 readd 10807 remullem 10809 imcj 10813 imneg 10814 imadd 10815 cjadd 10822 cjneg 10828 imval2 10832 rei 10837 imi 10838 cji 10840 cjreim 10841 cjreim2 10842 cjap 10844 cnrecnv 10848 rennim 10940 absi 10997 absreimsq 11005 absreim 11006 absimle 11022 climcvg1nlem 11286 sinval 11639 cosval 11640 sinf 11641 cosf 11642 tanval2ap 11650 tanval3ap 11651 resinval 11652 recosval 11653 efi4p 11654 resin4p 11655 recos4p 11656 resincl 11657 recoscl 11658 sinneg 11663 cosneg 11664 efival 11669 efmival 11670 efeul 11671 sinadd 11673 cosadd 11674 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 absef 11706 absefib 11707 efieq1re 11708 demoivre 11709 demoivreALT 11710 igz 12300 cnrehmeocntop 13193 sincn 13290 coscn 13291 efhalfpi 13320 ef2kpi 13327 efper 13328 sinperlem 13329 efimpi 13340 2sqlem2 13551 qdencn 13866 |
Copyright terms: Public domain | W3C validator |