![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-icn | GIF version |
Description: i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7923. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7874 | . 2 class i | |
2 | cc 7870 | . 2 class ℂ | |
3 | 1, 2 | wcel 2164 | 1 wff i ∈ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 8011 mulrid 8016 cnegexlem2 8195 cnegex 8197 0cnALT 8209 negicn 8220 ine0 8413 ixi 8602 rimul 8604 rereim 8605 apreap 8606 cru 8621 apreim 8622 mulreim 8623 apadd1 8627 apneg 8630 aprcl 8665 aptap 8669 recextlem1 8670 recexaplem2 8671 recexap 8672 crap0 8977 cju 8980 it0e0 9203 2mulicn 9204 iap0 9205 2muliap0 9206 cnref1o 9716 irec 10710 i2 10711 i3 10712 i4 10713 iexpcyc 10715 imval 10994 imre 10995 reim 10996 crre 11001 crim 11002 remim 11004 mulreap 11008 cjreb 11010 recj 11011 reneg 11012 readd 11013 remullem 11015 imcj 11019 imneg 11020 imadd 11021 cjadd 11028 cjneg 11034 imval2 11038 rei 11043 imi 11044 cji 11046 cjreim 11047 cjreim2 11048 cjap 11050 cnrecnv 11054 rennim 11146 absi 11203 absreimsq 11211 absreim 11212 absimle 11228 climcvg1nlem 11492 sinval 11845 cosval 11846 sinf 11847 cosf 11848 tanval2ap 11856 tanval3ap 11857 resinval 11858 recosval 11859 efi4p 11860 resin4p 11861 recos4p 11862 resincl 11863 recoscl 11864 sinneg 11869 cosneg 11870 efival 11875 efmival 11876 efeul 11877 sinadd 11879 cosadd 11880 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 absef 11913 absefib 11914 efieq1re 11915 demoivre 11916 demoivreALT 11917 igz 12512 4sqlem17 12545 cnrehmeocntop 14764 sincn 14904 coscn 14905 efhalfpi 14934 ef2kpi 14941 efper 14942 sinperlem 14943 efimpi 14954 2sqlem2 15202 qdencn 15517 |
Copyright terms: Public domain | W3C validator |