![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-icn | GIF version |
Description: i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7862. (Contributed by NM, 1-Mar-1995.) |
Ref | Expression |
---|---|
ax-icn | ⊢ i ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 7813 | . 2 class i | |
2 | cc 7809 | . 2 class ℂ | |
3 | 1, 2 | wcel 2148 | 1 wff i ∈ ℂ |
Colors of variables: wff set class |
This axiom is referenced by: 0cn 7949 mulrid 7954 cnegexlem2 8133 cnegex 8135 0cnALT 8147 negicn 8158 ine0 8351 ixi 8540 rimul 8542 rereim 8543 apreap 8544 cru 8559 apreim 8560 mulreim 8561 apadd1 8565 apneg 8568 aprcl 8603 aptap 8607 recextlem1 8608 recexaplem2 8609 recexap 8610 crap0 8915 cju 8918 it0e0 9140 2mulicn 9141 iap0 9142 2muliap0 9143 cnref1o 9650 irec 10620 i2 10621 i3 10622 i4 10623 iexpcyc 10625 imval 10859 imre 10860 reim 10861 crre 10866 crim 10867 remim 10869 mulreap 10873 cjreb 10875 recj 10876 reneg 10877 readd 10878 remullem 10880 imcj 10884 imneg 10885 imadd 10886 cjadd 10893 cjneg 10899 imval2 10903 rei 10908 imi 10909 cji 10911 cjreim 10912 cjreim2 10913 cjap 10915 cnrecnv 10919 rennim 11011 absi 11068 absreimsq 11076 absreim 11077 absimle 11093 climcvg1nlem 11357 sinval 11710 cosval 11711 sinf 11712 cosf 11713 tanval2ap 11721 tanval3ap 11722 resinval 11723 recosval 11724 efi4p 11725 resin4p 11726 recos4p 11727 resincl 11728 recoscl 11729 sinneg 11734 cosneg 11735 efival 11740 efmival 11741 efeul 11742 sinadd 11744 cosadd 11745 ef01bndlem 11764 sin01bnd 11765 cos01bnd 11766 absef 11777 absefib 11778 efieq1re 11779 demoivre 11780 demoivreALT 11781 igz 12372 cnrehmeocntop 14096 sincn 14193 coscn 14194 efhalfpi 14223 ef2kpi 14230 efper 14231 sinperlem 14232 efimpi 14243 2sqlem2 14465 qdencn 14778 |
Copyright terms: Public domain | W3C validator |