| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-icn | GIF version | ||
| Description: i is a complex number. Axiom for real and complex numbers, justified by Theorem axicn 7949. (Contributed by NM, 1-Mar-1995.) |
| Ref | Expression |
|---|---|
| ax-icn | ⊢ i ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ci 7900 | . 2 class i | |
| 2 | cc 7896 | . 2 class ℂ | |
| 3 | 1, 2 | wcel 2167 | 1 wff i ∈ ℂ |
| Colors of variables: wff set class |
| This axiom is referenced by: 0cn 8037 mulrid 8042 cnegexlem2 8221 cnegex 8223 0cnALT 8235 negicn 8246 ine0 8439 ixi 8629 rimul 8631 rereim 8632 apreap 8633 cru 8648 apreim 8649 mulreim 8650 apadd1 8654 apneg 8657 aprcl 8692 aptap 8696 recextlem1 8697 recexaplem2 8698 recexap 8699 crap0 9004 cju 9007 it0e0 9231 2mulicn 9232 iap0 9233 2muliap0 9234 cnref1o 9744 irec 10750 i2 10751 i3 10752 i4 10753 iexpcyc 10755 imval 11034 imre 11035 reim 11036 crre 11041 crim 11042 remim 11044 mulreap 11048 cjreb 11050 recj 11051 reneg 11052 readd 11053 remullem 11055 imcj 11059 imneg 11060 imadd 11061 cjadd 11068 cjneg 11074 imval2 11078 rei 11083 imi 11084 cji 11086 cjreim 11087 cjreim2 11088 cjap 11090 cnrecnv 11094 rennim 11186 absi 11243 absreimsq 11251 absreim 11252 absimle 11268 climcvg1nlem 11533 sinval 11886 cosval 11887 sinf 11888 cosf 11889 tanval2ap 11897 tanval3ap 11898 resinval 11899 recosval 11900 efi4p 11901 resin4p 11902 recos4p 11903 resincl 11904 recoscl 11905 sinneg 11910 cosneg 11911 efival 11916 efmival 11917 efeul 11918 sinadd 11920 cosadd 11921 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 absef 11954 absefib 11955 efieq1re 11956 demoivre 11957 demoivreALT 11958 igz 12570 4sqlem17 12603 cnrehmeocntop 14954 sincn 15113 coscn 15114 efhalfpi 15143 ef2kpi 15150 efper 15151 sinperlem 15152 efimpi 15163 2sqlem2 15464 qdencn 15784 |
| Copyright terms: Public domain | W3C validator |