| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > addcl | GIF version | ||
| Description: Alias for ax-addcl 7975, for naming consistency with addcli 8030. Use this theorem instead of ax-addcl 7975 or axaddcl 7931. (Contributed by NM, 10-Mar-2008.) | 
| Ref | Expression | 
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-addcl 7975 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 | 
| This theorem was proved from axioms: ax-addcl 7975 | 
| This theorem is referenced by: adddir 8017 0cn 8018 addcli 8030 addcld 8046 muladd11 8159 peano2cn 8161 muladd11r 8182 add4 8187 cnegexlem3 8203 cnegex 8204 0cnALT 8216 negeu 8217 pncan 8232 2addsub 8240 addsubeq4 8241 nppcan2 8257 ppncan 8268 muladd 8410 mulsub 8427 recexap 8680 muleqadd 8695 conjmulap 8756 ofnegsub 8989 halfaddsubcl 9224 halfaddsub 9225 serf 10575 ser3add 10614 ser3sub 10615 ser0 10625 binom2 10743 binom3 10749 bernneq 10752 shftlem 10981 shftval2 10991 shftval5 10994 2shfti 10996 crre 11022 crim 11023 cjadd 11049 addcj 11056 sqabsadd 11220 absreimsq 11232 absreim 11233 abstri 11269 addcn2 11475 climadd 11491 clim2ser 11502 clim2ser2 11503 isermulc2 11505 serf0 11517 sumrbdclem 11542 fsum3cvg 11543 summodclem3 11545 summodclem2a 11546 zsumdc 11549 fsum3 11552 fsum3cvg2 11559 fsum3ser 11562 fsumcl2lem 11563 fsumcl 11565 sumsnf 11574 fsummulc2 11613 binom 11649 isumshft 11655 isumsplit 11656 geolim2 11677 cvgratnnlemseq 11691 cvgratz 11697 ef0lem 11825 efcj 11838 ef4p 11859 efgt1p 11861 tanval3ap 11879 efi4p 11882 sinadd 11901 cosadd 11902 tanaddap 11904 addsin 11907 demoivreALT 11939 opoe 12060 pythagtriplem4 12437 pythagtriplem12 12444 gzaddcl 12546 cncrng 14125 addccncf 14836 dvaddxxbr 14937 dvaddxx 14939 dviaddf 14941 dveflem 14962 plyaddcl 14990 plymulcl 14991 plysubcl 14992 sinperlem 15044 ptolemy 15060 tangtx 15074 sinkpi 15083 binom4 15215 lgsquad2lem1 15322 2sqlem2 15356 | 
| Copyright terms: Public domain | W3C validator |