Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcl | GIF version |
Description: Alias for ax-addcl 7849, for naming consistency with addcli 7903. Use this theorem instead of ax-addcl 7849 or axaddcl 7805. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 7849 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-addcl 7849 |
This theorem is referenced by: adddir 7890 0cn 7891 addcli 7903 addcld 7918 muladd11 8031 peano2cn 8033 muladd11r 8054 add4 8059 cnegexlem3 8075 cnegex 8076 0cnALT 8088 negeu 8089 pncan 8104 2addsub 8112 addsubeq4 8113 nppcan2 8129 ppncan 8140 muladd 8282 mulsub 8299 recexap 8550 muleqadd 8565 conjmulap 8625 halfaddsubcl 9090 halfaddsub 9091 serf 10409 ser3add 10440 ser3sub 10441 ser0 10449 binom2 10566 binom3 10572 bernneq 10575 shftlem 10758 shftval2 10768 shftval5 10771 2shfti 10773 crre 10799 crim 10800 cjadd 10826 addcj 10833 sqabsadd 10997 absreimsq 11009 absreim 11010 abstri 11046 addcn2 11251 climadd 11267 clim2ser 11278 clim2ser2 11279 isermulc2 11281 serf0 11293 sumrbdclem 11318 fsum3cvg 11319 summodclem3 11321 summodclem2a 11322 zsumdc 11325 fsum3 11328 fsum3cvg2 11335 fsum3ser 11338 fsumcl2lem 11339 fsumcl 11341 sumsnf 11350 fsummulc2 11389 binom 11425 isumshft 11431 isumsplit 11432 geolim2 11453 cvgratnnlemseq 11467 cvgratz 11473 ef0lem 11601 efcj 11614 ef4p 11635 efgt1p 11637 tanval3ap 11655 efi4p 11658 sinadd 11677 cosadd 11678 tanaddap 11680 addsin 11683 demoivreALT 11714 opoe 11832 pythagtriplem4 12200 pythagtriplem12 12207 gzaddcl 12307 addccncf 13226 dvaddxxbr 13305 dvaddxx 13307 dviaddf 13309 dveflem 13327 sinperlem 13369 ptolemy 13385 tangtx 13399 sinkpi 13408 binom4 13537 2sqlem2 13591 |
Copyright terms: Public domain | W3C validator |