Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcl | GIF version |
Description: Alias for ax-addcl 7870, for naming consistency with addcli 7924. Use this theorem instead of ax-addcl 7870 or axaddcl 7826. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 7870 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-addcl 7870 |
This theorem is referenced by: adddir 7911 0cn 7912 addcli 7924 addcld 7939 muladd11 8052 peano2cn 8054 muladd11r 8075 add4 8080 cnegexlem3 8096 cnegex 8097 0cnALT 8109 negeu 8110 pncan 8125 2addsub 8133 addsubeq4 8134 nppcan2 8150 ppncan 8161 muladd 8303 mulsub 8320 recexap 8571 muleqadd 8586 conjmulap 8646 halfaddsubcl 9111 halfaddsub 9112 serf 10430 ser3add 10461 ser3sub 10462 ser0 10470 binom2 10587 binom3 10593 bernneq 10596 shftlem 10780 shftval2 10790 shftval5 10793 2shfti 10795 crre 10821 crim 10822 cjadd 10848 addcj 10855 sqabsadd 11019 absreimsq 11031 absreim 11032 abstri 11068 addcn2 11273 climadd 11289 clim2ser 11300 clim2ser2 11301 isermulc2 11303 serf0 11315 sumrbdclem 11340 fsum3cvg 11341 summodclem3 11343 summodclem2a 11344 zsumdc 11347 fsum3 11350 fsum3cvg2 11357 fsum3ser 11360 fsumcl2lem 11361 fsumcl 11363 sumsnf 11372 fsummulc2 11411 binom 11447 isumshft 11453 isumsplit 11454 geolim2 11475 cvgratnnlemseq 11489 cvgratz 11495 ef0lem 11623 efcj 11636 ef4p 11657 efgt1p 11659 tanval3ap 11677 efi4p 11680 sinadd 11699 cosadd 11700 tanaddap 11702 addsin 11705 demoivreALT 11736 opoe 11854 pythagtriplem4 12222 pythagtriplem12 12229 gzaddcl 12329 addccncf 13380 dvaddxxbr 13459 dvaddxx 13461 dviaddf 13463 dveflem 13481 sinperlem 13523 ptolemy 13539 tangtx 13553 sinkpi 13562 binom4 13691 2sqlem2 13745 |
Copyright terms: Public domain | W3C validator |