| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcl | GIF version | ||
| Description: Alias for ax-addcl 8103, for naming consistency with addcli 8158. Use this theorem instead of ax-addcl 8103 or axaddcl 8059. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 8103 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 |
| This theorem was proved from axioms: ax-addcl 8103 |
| This theorem is referenced by: adddir 8145 0cn 8146 addcli 8158 addcld 8174 muladd11 8287 peano2cn 8289 muladd11r 8310 add4 8315 cnegexlem3 8331 cnegex 8332 0cnALT 8344 negeu 8345 pncan 8360 2addsub 8368 addsubeq4 8369 nppcan2 8385 ppncan 8396 muladd 8538 mulsub 8555 recexap 8808 muleqadd 8823 conjmulap 8884 ofnegsub 9117 halfaddsubcl 9352 halfaddsub 9353 serf 10713 ser3add 10752 ser3sub 10753 ser0 10763 binom2 10881 binom3 10887 bernneq 10890 lswccatn0lsw 11154 shftlem 11335 shftval2 11345 shftval5 11348 2shfti 11350 crre 11376 crim 11377 cjadd 11403 addcj 11410 sqabsadd 11574 absreimsq 11586 absreim 11587 abstri 11623 addcn2 11829 climadd 11845 clim2ser 11856 clim2ser2 11857 isermulc2 11859 serf0 11871 sumrbdclem 11896 fsum3cvg 11897 summodclem3 11899 summodclem2a 11900 zsumdc 11903 fsum3 11906 fsum3cvg2 11913 fsum3ser 11916 fsumcl2lem 11917 fsumcl 11919 sumsnf 11928 fsummulc2 11967 binom 12003 isumshft 12009 isumsplit 12010 geolim2 12031 cvgratnnlemseq 12045 cvgratz 12051 ef0lem 12179 efcj 12192 ef4p 12213 efgt1p 12215 tanval3ap 12233 efi4p 12236 sinadd 12255 cosadd 12256 tanaddap 12258 addsin 12261 demoivreALT 12293 opoe 12414 pythagtriplem4 12799 pythagtriplem12 12806 gzaddcl 12908 cncrng 14541 addccncf 15282 dvaddxxbr 15383 dvaddxx 15385 dviaddf 15387 dveflem 15408 plyaddcl 15436 plymulcl 15437 plysubcl 15438 sinperlem 15490 ptolemy 15506 tangtx 15520 sinkpi 15529 binom4 15661 lgsquad2lem1 15768 2sqlem2 15802 |
| Copyright terms: Public domain | W3C validator |