![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcl | GIF version |
Description: Alias for ax-addcl 7591, for naming consistency with addcli 7642. Use this theorem instead of ax-addcl 7591 or axaddcl 7551. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcl 7591 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 1448 (class class class)co 5706 ℂcc 7498 + caddc 7503 |
This theorem was proved from axioms: ax-addcl 7591 |
This theorem is referenced by: adddir 7629 0cn 7630 addcli 7642 addcld 7657 muladd11 7766 peano2cn 7768 muladd11r 7789 add4 7794 cnegexlem3 7810 cnegex 7811 0cnALT 7823 negeu 7824 pncan 7839 2addsub 7847 addsubeq4 7848 nppcan2 7864 ppncan 7875 muladd 8013 mulsub 8030 recexap 8275 muleqadd 8290 conjmulap 8350 halfaddsubcl 8805 halfaddsub 8806 serf 10088 ser3add 10119 ser3sub 10120 ser0 10128 binom2 10244 binom3 10250 bernneq 10253 shftlem 10429 shftval2 10439 shftval5 10442 2shfti 10444 crre 10470 crim 10471 cjadd 10497 addcj 10504 sqabsadd 10667 absreimsq 10679 absreim 10680 abstri 10716 addcn2 10918 climadd 10934 clim2ser 10945 clim2ser2 10946 isermulc2 10948 serf0 10960 sumrbdclem 10984 fsum3cvg 10985 summodclem3 10988 summodclem2a 10989 zsumdc 10992 fsum3 10995 fsum3cvg2 11002 fsum3ser 11005 fsumcl2lem 11006 fsumcl 11008 sumsnf 11017 fsummulc2 11056 binom 11092 isumshft 11098 isumsplit 11099 geolim2 11120 cvgratnnlemseq 11134 cvgratz 11140 ef0lem 11164 efcj 11177 ef4p 11198 efgt1p 11200 tanval3ap 11219 efi4p 11222 sinadd 11241 cosadd 11242 tanaddap 11244 addsin 11247 demoivreALT 11277 opoe 11387 addccncf 12498 |
Copyright terms: Public domain | W3C validator |