| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcl | GIF version | ||
| Description: Alias for ax-addcl 8063, for naming consistency with addcli 8118. Use this theorem instead of ax-addcl 8063 or axaddcl 8019. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 8063 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-addcl 8063 |
| This theorem is referenced by: adddir 8105 0cn 8106 addcli 8118 addcld 8134 muladd11 8247 peano2cn 8249 muladd11r 8270 add4 8275 cnegexlem3 8291 cnegex 8292 0cnALT 8304 negeu 8305 pncan 8320 2addsub 8328 addsubeq4 8329 nppcan2 8345 ppncan 8356 muladd 8498 mulsub 8515 recexap 8768 muleqadd 8783 conjmulap 8844 ofnegsub 9077 halfaddsubcl 9312 halfaddsub 9313 serf 10672 ser3add 10711 ser3sub 10712 ser0 10722 binom2 10840 binom3 10846 bernneq 10849 lswccatn0lsw 11112 shftlem 11293 shftval2 11303 shftval5 11306 2shfti 11308 crre 11334 crim 11335 cjadd 11361 addcj 11368 sqabsadd 11532 absreimsq 11544 absreim 11545 abstri 11581 addcn2 11787 climadd 11803 clim2ser 11814 clim2ser2 11815 isermulc2 11817 serf0 11829 sumrbdclem 11854 fsum3cvg 11855 summodclem3 11857 summodclem2a 11858 zsumdc 11861 fsum3 11864 fsum3cvg2 11871 fsum3ser 11874 fsumcl2lem 11875 fsumcl 11877 sumsnf 11886 fsummulc2 11925 binom 11961 isumshft 11967 isumsplit 11968 geolim2 11989 cvgratnnlemseq 12003 cvgratz 12009 ef0lem 12137 efcj 12150 ef4p 12171 efgt1p 12173 tanval3ap 12191 efi4p 12194 sinadd 12213 cosadd 12214 tanaddap 12216 addsin 12219 demoivreALT 12251 opoe 12372 pythagtriplem4 12757 pythagtriplem12 12764 gzaddcl 12866 cncrng 14498 addccncf 15239 dvaddxxbr 15340 dvaddxx 15342 dviaddf 15344 dveflem 15365 plyaddcl 15393 plymulcl 15394 plysubcl 15395 sinperlem 15447 ptolemy 15463 tangtx 15477 sinkpi 15486 binom4 15618 lgsquad2lem1 15725 2sqlem2 15759 |
| Copyright terms: Public domain | W3C validator |