| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcl | GIF version | ||
| Description: Alias for ax-addcl 7994, for naming consistency with addcli 8049. Use this theorem instead of ax-addcl 7994 or axaddcl 7950. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 7994 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-addcl 7994 |
| This theorem is referenced by: adddir 8036 0cn 8037 addcli 8049 addcld 8065 muladd11 8178 peano2cn 8180 muladd11r 8201 add4 8206 cnegexlem3 8222 cnegex 8223 0cnALT 8235 negeu 8236 pncan 8251 2addsub 8259 addsubeq4 8260 nppcan2 8276 ppncan 8287 muladd 8429 mulsub 8446 recexap 8699 muleqadd 8714 conjmulap 8775 ofnegsub 9008 halfaddsubcl 9243 halfaddsub 9244 serf 10594 ser3add 10633 ser3sub 10634 ser0 10644 binom2 10762 binom3 10768 bernneq 10771 shftlem 11000 shftval2 11010 shftval5 11013 2shfti 11015 crre 11041 crim 11042 cjadd 11068 addcj 11075 sqabsadd 11239 absreimsq 11251 absreim 11252 abstri 11288 addcn2 11494 climadd 11510 clim2ser 11521 clim2ser2 11522 isermulc2 11524 serf0 11536 sumrbdclem 11561 fsum3cvg 11562 summodclem3 11564 summodclem2a 11565 zsumdc 11568 fsum3 11571 fsum3cvg2 11578 fsum3ser 11581 fsumcl2lem 11582 fsumcl 11584 sumsnf 11593 fsummulc2 11632 binom 11668 isumshft 11674 isumsplit 11675 geolim2 11696 cvgratnnlemseq 11710 cvgratz 11716 ef0lem 11844 efcj 11857 ef4p 11878 efgt1p 11880 tanval3ap 11898 efi4p 11901 sinadd 11920 cosadd 11921 tanaddap 11923 addsin 11926 demoivreALT 11958 opoe 12079 pythagtriplem4 12464 pythagtriplem12 12471 gzaddcl 12573 cncrng 14203 addccncf 14922 dvaddxxbr 15023 dvaddxx 15025 dviaddf 15027 dveflem 15048 plyaddcl 15076 plymulcl 15077 plysubcl 15078 sinperlem 15130 ptolemy 15146 tangtx 15160 sinkpi 15169 binom4 15301 lgsquad2lem1 15408 2sqlem2 15442 |
| Copyright terms: Public domain | W3C validator |