| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcl | GIF version | ||
| Description: Alias for ax-addcl 8028, for naming consistency with addcli 8083. Use this theorem instead of ax-addcl 8028 or axaddcl 7984. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcl 8028 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 |
| This theorem was proved from axioms: ax-addcl 8028 |
| This theorem is referenced by: adddir 8070 0cn 8071 addcli 8083 addcld 8099 muladd11 8212 peano2cn 8214 muladd11r 8235 add4 8240 cnegexlem3 8256 cnegex 8257 0cnALT 8269 negeu 8270 pncan 8285 2addsub 8293 addsubeq4 8294 nppcan2 8310 ppncan 8321 muladd 8463 mulsub 8480 recexap 8733 muleqadd 8748 conjmulap 8809 ofnegsub 9042 halfaddsubcl 9277 halfaddsub 9278 serf 10635 ser3add 10674 ser3sub 10675 ser0 10685 binom2 10803 binom3 10809 bernneq 10812 lswccatn0lsw 11075 shftlem 11171 shftval2 11181 shftval5 11184 2shfti 11186 crre 11212 crim 11213 cjadd 11239 addcj 11246 sqabsadd 11410 absreimsq 11422 absreim 11423 abstri 11459 addcn2 11665 climadd 11681 clim2ser 11692 clim2ser2 11693 isermulc2 11695 serf0 11707 sumrbdclem 11732 fsum3cvg 11733 summodclem3 11735 summodclem2a 11736 zsumdc 11739 fsum3 11742 fsum3cvg2 11749 fsum3ser 11752 fsumcl2lem 11753 fsumcl 11755 sumsnf 11764 fsummulc2 11803 binom 11839 isumshft 11845 isumsplit 11846 geolim2 11867 cvgratnnlemseq 11881 cvgratz 11887 ef0lem 12015 efcj 12028 ef4p 12049 efgt1p 12051 tanval3ap 12069 efi4p 12072 sinadd 12091 cosadd 12092 tanaddap 12094 addsin 12097 demoivreALT 12129 opoe 12250 pythagtriplem4 12635 pythagtriplem12 12642 gzaddcl 12744 cncrng 14375 addccncf 15116 dvaddxxbr 15217 dvaddxx 15219 dviaddf 15221 dveflem 15242 plyaddcl 15270 plymulcl 15271 plysubcl 15272 sinperlem 15324 ptolemy 15340 tangtx 15354 sinkpi 15363 binom4 15495 lgsquad2lem1 15602 2sqlem2 15636 |
| Copyright terms: Public domain | W3C validator |