ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addcl Unicode version

Axiom ax-addcl 7975
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7931. Proofs should normally use addcl 8004 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )

Detailed syntax breakdown of Axiom ax-addcl
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7877 . . . 4  class  CC
31, 2wcel 2167 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2167 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 caddc 7882 . . . 4  class  +
81, 4, 7co 5922 . . 3  class  ( A  +  B )
98, 2wcel 2167 . 2  wff  ( A  +  B )  e.  CC
106, 9wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
Colors of variables: wff set class
This axiom is referenced by:  addcl  8004
  Copyright terms: Public domain W3C validator