ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addcl Unicode version

Axiom ax-addcl 7909
Description: Closure law for addition of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddcl 7865. Proofs should normally use addcl 7938 instead, which asserts the same thing but follows our naming conventions for closures. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addcl  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )

Detailed syntax breakdown of Axiom ax-addcl
StepHypRef Expression
1 cA . . . 4  class  A
2 cc 7811 . . . 4  class  CC
31, 2wcel 2148 . . 3  wff  A  e.  CC
4 cB . . . 4  class  B
54, 2wcel 2148 . . 3  wff  B  e.  CC
63, 5wa 104 . 2  wff  ( A  e.  CC  /\  B  e.  CC )
7 caddc 7816 . . . 4  class  +
81, 4, 7co 5877 . . 3  class  ( A  +  B )
98, 2wcel 2148 . 2  wff  ( A  +  B )  e.  CC
106, 9wi 4 1  wff  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
Colors of variables: wff set class
This axiom is referenced by:  addcl  7938
  Copyright terms: Public domain W3C validator