ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addrcl GIF version

Axiom ax-addrcl 7636
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by theorem axaddrcl 7594. Proofs should normally use readdcl 7664 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-addrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 7540 . . . 4 class
31, 2wcel 1461 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 1461 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 103 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 caddc 7544 . . . 4 class +
81, 4, 7co 5726 . . 3 class (𝐴 + 𝐵)
98, 2wcel 1461 . 2 wff (𝐴 + 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  readdcl  7664
  Copyright terms: Public domain W3C validator