| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-addrcl | GIF version | ||
| Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 8060. Proofs should normally use readdcl 8133 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 8006 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 2200 | . . 3 wff 𝐴 ∈ ℝ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2200 | . . 3 wff 𝐵 ∈ ℝ |
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
| 7 | caddc 8010 | . . . 4 class + | |
| 8 | 1, 4, 7 | co 6007 | . . 3 class (𝐴 + 𝐵) |
| 9 | 8, 2 | wcel 2200 | . 2 wff (𝐴 + 𝐵) ∈ ℝ |
| 10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| This axiom is referenced by: readdcl 8133 |
| Copyright terms: Public domain | W3C validator |