![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-addrcl | GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by theorem axaddrcl 7594. Proofs should normally use readdcl 7664 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7540 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 1461 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 1461 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | caddc 7544 | . . . 4 class + | |
8 | 1, 4, 7 | co 5726 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 1461 | . 2 wff (𝐴 + 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
This axiom is referenced by: readdcl 7664 |
Copyright terms: Public domain | W3C validator |