ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addrcl GIF version

Axiom ax-addrcl 7829
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7785. Proofs should normally use readdcl 7858 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-addrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 7731 . . . 4 class
31, 2wcel 2128 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 2128 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 103 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 caddc 7735 . . . 4 class +
81, 4, 7co 5824 . . 3 class (𝐴 + 𝐵)
98, 2wcel 2128 . 2 wff (𝐴 + 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  readdcl  7858
  Copyright terms: Public domain W3C validator