Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addrcl | GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7785. Proofs should normally use readdcl 7858 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7731 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2128 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2128 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | caddc 7735 | . . . 4 class + | |
8 | 1, 4, 7 | co 5824 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2128 | . 2 wff (𝐴 + 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
This axiom is referenced by: readdcl 7858 |
Copyright terms: Public domain | W3C validator |