ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addrcl GIF version

Axiom ax-addrcl 7995
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7951. Proofs should normally use readdcl 8024 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-addrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 7897 . . . 4 class
31, 2wcel 2167 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 2167 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 104 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 caddc 7901 . . . 4 class +
81, 4, 7co 5925 . . 3 class (𝐴 + 𝐵)
98, 2wcel 2167 . 2 wff (𝐴 + 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  readdcl  8024
  Copyright terms: Public domain W3C validator