![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-addrcl | GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7925. Proofs should normally use readdcl 7998 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7871 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2164 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2164 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | caddc 7875 | . . . 4 class + | |
8 | 1, 4, 7 | co 5918 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2164 | . 2 wff (𝐴 + 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
This axiom is referenced by: readdcl 7998 |
Copyright terms: Public domain | W3C validator |