ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addrcl GIF version

Axiom ax-addrcl 8029
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axaddrcl 7985. Proofs should normally use readdcl 8058 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-addrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 7931 . . . 4 class
31, 2wcel 2177 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 2177 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 104 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 caddc 7935 . . . 4 class +
81, 4, 7co 5951 . . 3 class (𝐴 + 𝐵)
98, 2wcel 2177 . 2 wff (𝐴 + 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  readdcl  8058
  Copyright terms: Public domain W3C validator