Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addcom | GIF version |
Description: Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7832. Proofs should normally use addcom 8056 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
ax-addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7772 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2141 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2141 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | caddc 7777 | . . . 4 class + | |
8 | 1, 4, 7 | co 5853 | . . 3 class (𝐴 + 𝐵) |
9 | 4, 1, 7 | co 5853 | . . 3 class (𝐵 + 𝐴) |
10 | 8, 9 | wceq 1348 | . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴) |
11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
This axiom is referenced by: addcom 8056 |
Copyright terms: Public domain | W3C validator |