| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax-addcom | GIF version | ||
| Description: Addition commutes. Axiom for real and complex numbers, justified by Theorem axaddcom 7937. Proofs should normally use addcom 8163 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 17-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| ax-addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7877 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2167 | . . 3 wff 𝐴 ∈ ℂ | 
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2167 | . . 3 wff 𝐵 ∈ ℂ | 
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) | 
| 7 | caddc 7882 | . . . 4 class + | |
| 8 | 1, 4, 7 | co 5922 | . . 3 class (𝐴 + 𝐵) | 
| 9 | 4, 1, 7 | co 5922 | . . 3 class (𝐵 + 𝐴) | 
| 10 | 8, 9 | wceq 1364 | . 2 wff (𝐴 + 𝐵) = (𝐵 + 𝐴) | 
| 11 | 6, 10 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | 
| Colors of variables: wff set class | 
| This axiom is referenced by: addcom 8163 | 
| Copyright terms: Public domain | W3C validator |