ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulrcl GIF version

Axiom ax-mulrcl 7981
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7937. Proofs should normally use remulcl 8010 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-mulrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 7881 . . . 4 class
31, 2wcel 2167 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 2167 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 104 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 cmul 7887 . . . 4 class ·
81, 4, 7co 5923 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2167 . 2 wff (𝐴 · 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  remulcl  8010
  Copyright terms: Public domain W3C validator