![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-mulrcl | GIF version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7897. Proofs should normally use remulcl 7970 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7841 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2160 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2160 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | cmul 7847 | . . . 4 class · | |
8 | 1, 4, 7 | co 5897 | . . 3 class (𝐴 · 𝐵) |
9 | 8, 2 | wcel 2160 | . 2 wff (𝐴 · 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
This axiom is referenced by: remulcl 7970 |
Copyright terms: Public domain | W3C validator |