![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-mulrcl | GIF version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7927. Proofs should normally use remulcl 8000 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7871 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2164 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2164 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | cmul 7877 | . . . 4 class · | |
8 | 1, 4, 7 | co 5918 | . . 3 class (𝐴 · 𝐵) |
9 | 8, 2 | wcel 2164 | . 2 wff (𝐴 · 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
This axiom is referenced by: remulcl 8000 |
Copyright terms: Public domain | W3C validator |