ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulrcl GIF version

Axiom ax-mulrcl 8106
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 8062. Proofs should normally use remulcl 8135 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-mulrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 8006 . . . 4 class
31, 2wcel 2200 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 2200 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 104 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 cmul 8012 . . . 4 class ·
81, 4, 7co 6007 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2200 . 2 wff (𝐴 · 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  remulcl  8135
  Copyright terms: Public domain W3C validator