ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulrcl GIF version

Axiom ax-mulrcl 7873
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7829. Proofs should normally use remulcl 7902 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulrcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)

Detailed syntax breakdown of Axiom ax-mulrcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cr 7773 . . . 4 class
31, 2wcel 2141 . . 3 wff 𝐴 ∈ ℝ
4 cB . . . 4 class 𝐵
54, 2wcel 2141 . . 3 wff 𝐵 ∈ ℝ
63, 5wa 103 . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)
7 cmul 7779 . . . 4 class ·
81, 4, 7co 5853 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2141 . 2 wff (𝐴 · 𝐵) ∈ ℝ
106, 9wi 4 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
Colors of variables: wff set class
This axiom is referenced by:  remulcl  7902
  Copyright terms: Public domain W3C validator