Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-mulrcl | GIF version |
Description: Closure law for multiplication in the real subfield of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulrcl 7808. Proofs should normally use remulcl 7881 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 7752 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2136 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2136 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | cmul 7758 | . . . 4 class · | |
8 | 1, 4, 7 | co 5842 | . . 3 class (𝐴 · 𝐵) |
9 | 8, 2 | wcel 2136 | . 2 wff (𝐴 · 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
This axiom is referenced by: remulcl 7881 |
Copyright terms: Public domain | W3C validator |