![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axaddcom | GIF version |
Description: Addition commutes. Axiom
for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly, nor should the proven axiom ax-addcom 7595 be used later.
Instead, use addcom 7770.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 7506 | . 2 ⊢ ℂ = (R × R) | |
2 | oveq1 5713 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = (𝐴 + 〈𝑧, 𝑤〉)) | |
3 | oveq2 5714 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) = (〈𝑧, 𝑤〉 + 𝐴)) | |
4 | 2, 3 | eqeq12d 2114 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) ↔ (𝐴 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 𝐴))) |
5 | oveq2 5714 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝐴 + 〈𝑧, 𝑤〉) = (𝐴 + 𝐵)) | |
6 | oveq1 5713 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (〈𝑧, 𝑤〉 + 𝐴) = (𝐵 + 𝐴)) | |
7 | 5, 6 | eqeq12d 2114 | . 2 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → ((𝐴 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
8 | addcomsrg 7451 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 +R 𝑧) = (𝑧 +R 𝑥)) | |
9 | 8 | ad2ant2r 496 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 +R 𝑧) = (𝑧 +R 𝑥)) |
10 | addcomsrg 7451 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 +R 𝑤) = (𝑤 +R 𝑦)) | |
11 | 10 | ad2ant2l 495 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 +R 𝑤) = (𝑤 +R 𝑦)) |
12 | 9, 11 | opeq12d 3660 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉 = 〈(𝑧 +R 𝑥), (𝑤 +R 𝑦)〉) |
13 | addcnsr 7521 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉) | |
14 | addcnsr 7521 | . . . 4 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) = 〈(𝑧 +R 𝑥), (𝑤 +R 𝑦)〉) | |
15 | 14 | ancoms 266 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) = 〈(𝑧 +R 𝑥), (𝑤 +R 𝑦)〉) |
16 | 12, 13, 15 | 3eqtr4d 2142 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉)) |
17 | 1, 4, 7, 16 | 2optocl 4554 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 〈cop 3477 (class class class)co 5706 Rcnr 7006 +R cplr 7010 ℂcc 7498 + caddc 7503 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-1o 6243 df-2o 6244 df-oadd 6247 df-omul 6248 df-er 6359 df-ec 6361 df-qs 6365 df-ni 7013 df-pli 7014 df-mi 7015 df-lti 7016 df-plpq 7053 df-mpq 7054 df-enq 7056 df-nqqs 7057 df-plqqs 7058 df-mqqs 7059 df-1nqqs 7060 df-rq 7061 df-ltnqqs 7062 df-enq0 7133 df-nq0 7134 df-0nq0 7135 df-plq0 7136 df-mq0 7137 df-inp 7175 df-iplp 7177 df-enr 7422 df-nr 7423 df-plr 7424 df-c 7506 df-add 7511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |