ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddcom GIF version

Theorem axaddcom 7844
Description: Addition commutes. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcom 7886 be used later. Instead, use addcom 8068.

In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axaddcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))

Proof of Theorem axaddcom
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-c 7792 . 2 ℂ = (R × R)
2 oveq1 5872 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ + ⟨𝑧, 𝑤⟩) = (𝐴 + ⟨𝑧, 𝑤⟩))
3 oveq2 5873 . . 3 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑧, 𝑤⟩ + ⟨𝑥, 𝑦⟩) = (⟨𝑧, 𝑤⟩ + 𝐴))
42, 3eqeq12d 2190 . 2 (⟨𝑥, 𝑦⟩ = 𝐴 → ((⟨𝑥, 𝑦⟩ + ⟨𝑧, 𝑤⟩) = (⟨𝑧, 𝑤⟩ + ⟨𝑥, 𝑦⟩) ↔ (𝐴 + ⟨𝑧, 𝑤⟩) = (⟨𝑧, 𝑤⟩ + 𝐴)))
5 oveq2 5873 . . 3 (⟨𝑧, 𝑤⟩ = 𝐵 → (𝐴 + ⟨𝑧, 𝑤⟩) = (𝐴 + 𝐵))
6 oveq1 5872 . . 3 (⟨𝑧, 𝑤⟩ = 𝐵 → (⟨𝑧, 𝑤⟩ + 𝐴) = (𝐵 + 𝐴))
75, 6eqeq12d 2190 . 2 (⟨𝑧, 𝑤⟩ = 𝐵 → ((𝐴 + ⟨𝑧, 𝑤⟩) = (⟨𝑧, 𝑤⟩ + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴)))
8 addcomsrg 7729 . . . . 5 ((𝑥R𝑧R) → (𝑥 +R 𝑧) = (𝑧 +R 𝑥))
98ad2ant2r 509 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑥 +R 𝑧) = (𝑧 +R 𝑥))
10 addcomsrg 7729 . . . . 5 ((𝑦R𝑤R) → (𝑦 +R 𝑤) = (𝑤 +R 𝑦))
1110ad2ant2l 508 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (𝑦 +R 𝑤) = (𝑤 +R 𝑦))
129, 11opeq12d 3782 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩ = ⟨(𝑧 +R 𝑥), (𝑤 +R 𝑦)⟩)
13 addcnsr 7808 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (⟨𝑥, 𝑦⟩ + ⟨𝑧, 𝑤⟩) = ⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩)
14 addcnsr 7808 . . . 4 (((𝑧R𝑤R) ∧ (𝑥R𝑦R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑥, 𝑦⟩) = ⟨(𝑧 +R 𝑥), (𝑤 +R 𝑦)⟩)
1514ancoms 268 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (⟨𝑧, 𝑤⟩ + ⟨𝑥, 𝑦⟩) = ⟨(𝑧 +R 𝑥), (𝑤 +R 𝑦)⟩)
1612, 13, 153eqtr4d 2218 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (⟨𝑥, 𝑦⟩ + ⟨𝑧, 𝑤⟩) = (⟨𝑧, 𝑤⟩ + ⟨𝑥, 𝑦⟩))
171, 4, 7, 162optocl 4697 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  cop 3592  (class class class)co 5865  Rcnr 7271   +R cplr 7275  cc 7784   + caddc 7789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-2o 6408  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-enq0 7398  df-nq0 7399  df-0nq0 7400  df-plq0 7401  df-mq0 7402  df-inp 7440  df-iplp 7442  df-enr 7700  df-nr 7701  df-plr 7702  df-c 7792  df-add 7797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator