| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axaddcom | GIF version | ||
| Description: Addition commutes. Axiom
for real and complex numbers, derived from set
theory. This construction-dependent theorem should not be referenced
directly, nor should the proven axiom ax-addcom 8038 be used later.
Instead, use addcom 8222.
In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on real number trichotomy and it is not known whether it is possible to prove this from the other axioms without it. (Contributed by Jim Kingdon, 17-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axaddcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7944 | . 2 ⊢ ℂ = (R × R) | |
| 2 | oveq1 5961 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = (𝐴 + 〈𝑧, 𝑤〉)) | |
| 3 | oveq2 5962 | . . 3 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) = (〈𝑧, 𝑤〉 + 𝐴)) | |
| 4 | 2, 3 | eqeq12d 2221 | . 2 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → ((〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) ↔ (𝐴 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 𝐴))) |
| 5 | oveq2 5962 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (𝐴 + 〈𝑧, 𝑤〉) = (𝐴 + 𝐵)) | |
| 6 | oveq1 5961 | . . 3 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → (〈𝑧, 𝑤〉 + 𝐴) = (𝐵 + 𝐴)) | |
| 7 | 5, 6 | eqeq12d 2221 | . 2 ⊢ (〈𝑧, 𝑤〉 = 𝐵 → ((𝐴 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 𝐴) ↔ (𝐴 + 𝐵) = (𝐵 + 𝐴))) |
| 8 | addcomsrg 7881 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 +R 𝑧) = (𝑧 +R 𝑥)) | |
| 9 | 8 | ad2ant2r 509 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑥 +R 𝑧) = (𝑧 +R 𝑥)) |
| 10 | addcomsrg 7881 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 +R 𝑤) = (𝑤 +R 𝑦)) | |
| 11 | 10 | ad2ant2l 508 | . . . 4 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (𝑦 +R 𝑤) = (𝑤 +R 𝑦)) |
| 12 | 9, 11 | opeq12d 3830 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → 〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉 = 〈(𝑧 +R 𝑥), (𝑤 +R 𝑦)〉) |
| 13 | addcnsr 7960 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = 〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉) | |
| 14 | addcnsr 7960 | . . . 4 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑥 ∈ R ∧ 𝑦 ∈ R)) → (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) = 〈(𝑧 +R 𝑥), (𝑤 +R 𝑦)〉) | |
| 15 | 14 | ancoms 268 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉) = 〈(𝑧 +R 𝑥), (𝑤 +R 𝑦)〉) |
| 16 | 12, 13, 15 | 3eqtr4d 2249 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → (〈𝑥, 𝑦〉 + 〈𝑧, 𝑤〉) = (〈𝑧, 𝑤〉 + 〈𝑥, 𝑦〉)) |
| 17 | 1, 4, 7, 16 | 2optocl 4757 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 〈cop 3638 (class class class)co 5954 Rcnr 7423 +R cplr 7427 ℂcc 7936 + caddc 7941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-iplp 7594 df-enr 7852 df-nr 7853 df-plr 7854 df-c 7944 df-add 7949 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |