![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcom | GIF version |
Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcom 7910 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 (class class class)co 5874 ℂcc 7808 + caddc 7813 |
This theorem was proved from axioms: ax-addcom 7910 |
This theorem is referenced by: addlid 8095 readdcan 8096 addcomi 8100 addcomd 8107 add12 8114 add32 8115 add42 8118 cnegexlem1 8131 cnegexlem3 8133 cnegex2 8135 subsub23 8161 pncan2 8163 addsub 8167 addsub12 8169 addsubeq4 8171 sub32 8190 pnpcan2 8196 ppncan 8198 sub4 8201 negsubdi2 8215 ltadd2 8375 ltaddnegr 8381 ltaddsub2 8393 leaddsub2 8395 leltadd 8403 ltaddpos2 8409 addge02 8429 conjmulap 8685 recreclt 8856 avgle1 9158 avgle2 9159 nn0nnaddcl 9206 xaddcom 9860 fzen 10042 fzshftral 10107 flqzadd 10297 addmodidr 10372 nn0ennn 10432 ser3add 10504 bernneq2 10641 shftval2 10834 shftval4 10836 crim 10866 resqrexlemover 11018 climshft2 11313 summodclem3 11387 binom1dif 11494 isumshft 11497 arisum 11505 mertenslemi1 11542 addcos 11753 demoivreALT 11780 dvdsaddr 11843 divalgb 11929 hashdvds 12220 pythagtriplem2 12265 mulgnndir 13010 cncrng 13433 ioo2bl 14013 reeff1olem 14162 ptolemy 14215 |
Copyright terms: Public domain | W3C validator |