![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcom | GIF version |
Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcom 7974 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 |
This theorem was proved from axioms: ax-addcom 7974 |
This theorem is referenced by: addlid 8160 readdcan 8161 addcomi 8165 addcomd 8172 add12 8179 add32 8180 add42 8183 cnegexlem1 8196 cnegexlem3 8198 cnegex2 8200 subsub23 8226 pncan2 8228 addsub 8232 addsub12 8234 addsubeq4 8236 sub32 8255 pnpcan2 8261 ppncan 8263 sub4 8266 negsubdi2 8280 ltadd2 8440 ltaddnegr 8446 ltaddsub2 8458 leaddsub2 8460 leltadd 8468 ltaddpos2 8474 addge02 8494 conjmulap 8750 recreclt 8921 avgle1 9226 avgle2 9227 nn0nnaddcl 9274 xaddcom 9930 fzen 10112 fzshftral 10177 flqzadd 10370 addmodidr 10447 nn0ennn 10507 ser3add 10596 bernneq2 10735 shftval2 10973 shftval4 10975 crim 11005 resqrexlemover 11157 climshft2 11452 summodclem3 11526 binom1dif 11633 isumshft 11636 arisum 11644 mertenslemi1 11681 addcos 11892 demoivreALT 11920 dvdsaddr 11983 divalgb 12069 hashdvds 12362 pythagtriplem2 12407 mulgnndir 13224 cncrng 14068 ioo2bl 14730 reeff1olem 14947 ptolemy 15000 wilthlem1 15153 |
Copyright terms: Public domain | W3C validator |