![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcom | GIF version |
Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcom 7972 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-addcom 7972 |
This theorem is referenced by: addlid 8158 readdcan 8159 addcomi 8163 addcomd 8170 add12 8177 add32 8178 add42 8181 cnegexlem1 8194 cnegexlem3 8196 cnegex2 8198 subsub23 8224 pncan2 8226 addsub 8230 addsub12 8232 addsubeq4 8234 sub32 8253 pnpcan2 8259 ppncan 8261 sub4 8264 negsubdi2 8278 ltadd2 8438 ltaddnegr 8444 ltaddsub2 8456 leaddsub2 8458 leltadd 8466 ltaddpos2 8472 addge02 8492 conjmulap 8748 recreclt 8919 avgle1 9223 avgle2 9224 nn0nnaddcl 9271 xaddcom 9927 fzen 10109 fzshftral 10174 flqzadd 10367 addmodidr 10444 nn0ennn 10504 ser3add 10593 bernneq2 10732 shftval2 10970 shftval4 10972 crim 11002 resqrexlemover 11154 climshft2 11449 summodclem3 11523 binom1dif 11630 isumshft 11633 arisum 11641 mertenslemi1 11678 addcos 11889 demoivreALT 11917 dvdsaddr 11980 divalgb 12066 hashdvds 12359 pythagtriplem2 12404 mulgnndir 13221 cncrng 14057 ioo2bl 14711 reeff1olem 14906 ptolemy 14959 wilthlem1 15112 |
Copyright terms: Public domain | W3C validator |