| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcom | GIF version | ||
| Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcom 8107 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 |
| This theorem was proved from axioms: ax-addcom 8107 |
| This theorem is referenced by: addlid 8293 readdcan 8294 addcomi 8298 addcomd 8305 add12 8312 add32 8313 add42 8316 cnegexlem1 8329 cnegexlem3 8331 cnegex2 8333 subsub23 8359 pncan2 8361 addsub 8365 addsub12 8367 addsubeq4 8369 sub32 8388 pnpcan2 8394 ppncan 8396 sub4 8399 negsubdi2 8413 ltadd2 8574 ltaddnegr 8580 ltaddsub2 8592 leaddsub2 8594 leltadd 8602 ltaddpos2 8608 addge02 8628 conjmulap 8884 recreclt 9055 avgle1 9360 avgle2 9361 nn0nnaddcl 9408 xaddcom 10065 fzen 10247 fzshftral 10312 fzo0addelr 10403 flqzadd 10526 addmodidr 10603 nn0ennn 10663 ser3add 10752 bernneq2 10891 ccatrn 11152 shftval2 11345 shftval4 11347 crim 11377 resqrexlemover 11529 climshft2 11825 summodclem3 11899 binom1dif 12006 isumshft 12009 arisum 12017 mertenslemi1 12054 addcos 12265 demoivreALT 12293 dvdsaddr 12356 divalgb 12444 hashdvds 12751 pythagtriplem2 12797 mulgnndir 13696 cncrng 14541 ioo2bl 15233 reeff1olem 15453 ptolemy 15506 wilthlem1 15662 1sgmprm 15676 perfectlem2 15682 |
| Copyright terms: Public domain | W3C validator |