| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcom | GIF version | ||
| Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcom 7998 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-addcom 7998 |
| This theorem is referenced by: addlid 8184 readdcan 8185 addcomi 8189 addcomd 8196 add12 8203 add32 8204 add42 8207 cnegexlem1 8220 cnegexlem3 8222 cnegex2 8224 subsub23 8250 pncan2 8252 addsub 8256 addsub12 8258 addsubeq4 8260 sub32 8279 pnpcan2 8285 ppncan 8287 sub4 8290 negsubdi2 8304 ltadd2 8465 ltaddnegr 8471 ltaddsub2 8483 leaddsub2 8485 leltadd 8493 ltaddpos2 8499 addge02 8519 conjmulap 8775 recreclt 8946 avgle1 9251 avgle2 9252 nn0nnaddcl 9299 xaddcom 9955 fzen 10137 fzshftral 10202 flqzadd 10407 addmodidr 10484 nn0ennn 10544 ser3add 10633 bernneq2 10772 shftval2 11010 shftval4 11012 crim 11042 resqrexlemover 11194 climshft2 11490 summodclem3 11564 binom1dif 11671 isumshft 11674 arisum 11682 mertenslemi1 11719 addcos 11930 demoivreALT 11958 dvdsaddr 12021 divalgb 12109 hashdvds 12416 pythagtriplem2 12462 mulgnndir 13359 cncrng 14203 ioo2bl 14873 reeff1olem 15093 ptolemy 15146 wilthlem1 15302 1sgmprm 15316 perfectlem2 15322 |
| Copyright terms: Public domain | W3C validator |