| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcom | GIF version | ||
| Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcom 7996 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 |
| This theorem was proved from axioms: ax-addcom 7996 |
| This theorem is referenced by: addlid 8182 readdcan 8183 addcomi 8187 addcomd 8194 add12 8201 add32 8202 add42 8205 cnegexlem1 8218 cnegexlem3 8220 cnegex2 8222 subsub23 8248 pncan2 8250 addsub 8254 addsub12 8256 addsubeq4 8258 sub32 8277 pnpcan2 8283 ppncan 8285 sub4 8288 negsubdi2 8302 ltadd2 8463 ltaddnegr 8469 ltaddsub2 8481 leaddsub2 8483 leltadd 8491 ltaddpos2 8497 addge02 8517 conjmulap 8773 recreclt 8944 avgle1 9249 avgle2 9250 nn0nnaddcl 9297 xaddcom 9953 fzen 10135 fzshftral 10200 flqzadd 10405 addmodidr 10482 nn0ennn 10542 ser3add 10631 bernneq2 10770 shftval2 11008 shftval4 11010 crim 11040 resqrexlemover 11192 climshft2 11488 summodclem3 11562 binom1dif 11669 isumshft 11672 arisum 11680 mertenslemi1 11717 addcos 11928 demoivreALT 11956 dvdsaddr 12019 divalgb 12107 hashdvds 12414 pythagtriplem2 12460 mulgnndir 13357 cncrng 14201 ioo2bl 14871 reeff1olem 15091 ptolemy 15144 wilthlem1 15300 1sgmprm 15314 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |