| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcom | GIF version | ||
| Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcom 8067 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-addcom 8067 |
| This theorem is referenced by: addlid 8253 readdcan 8254 addcomi 8258 addcomd 8265 add12 8272 add32 8273 add42 8276 cnegexlem1 8289 cnegexlem3 8291 cnegex2 8293 subsub23 8319 pncan2 8321 addsub 8325 addsub12 8327 addsubeq4 8329 sub32 8348 pnpcan2 8354 ppncan 8356 sub4 8359 negsubdi2 8373 ltadd2 8534 ltaddnegr 8540 ltaddsub2 8552 leaddsub2 8554 leltadd 8562 ltaddpos2 8568 addge02 8588 conjmulap 8844 recreclt 9015 avgle1 9320 avgle2 9321 nn0nnaddcl 9368 xaddcom 10025 fzen 10207 fzshftral 10272 fzo0addelr 10362 flqzadd 10485 addmodidr 10562 nn0ennn 10622 ser3add 10711 bernneq2 10850 ccatrn 11110 shftval2 11303 shftval4 11305 crim 11335 resqrexlemover 11487 climshft2 11783 summodclem3 11857 binom1dif 11964 isumshft 11967 arisum 11975 mertenslemi1 12012 addcos 12223 demoivreALT 12251 dvdsaddr 12314 divalgb 12402 hashdvds 12709 pythagtriplem2 12755 mulgnndir 13654 cncrng 14498 ioo2bl 15190 reeff1olem 15410 ptolemy 15463 wilthlem1 15619 1sgmprm 15633 perfectlem2 15639 |
| Copyright terms: Public domain | W3C validator |