Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcom | GIF version |
Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcom 7853 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-addcom 7853 |
This theorem is referenced by: addid2 8037 readdcan 8038 addcomi 8042 addcomd 8049 add12 8056 add32 8057 add42 8060 cnegexlem1 8073 cnegexlem3 8075 cnegex2 8077 subsub23 8103 pncan2 8105 addsub 8109 addsub12 8111 addsubeq4 8113 sub32 8132 pnpcan2 8138 ppncan 8140 sub4 8143 negsubdi2 8157 ltadd2 8317 ltaddnegr 8323 ltaddsub2 8335 leaddsub2 8337 leltadd 8345 ltaddpos2 8351 addge02 8371 conjmulap 8625 recreclt 8795 avgle1 9097 avgle2 9098 nn0nnaddcl 9145 xaddcom 9797 fzen 9978 fzshftral 10043 flqzadd 10233 addmodidr 10308 nn0ennn 10368 ser3add 10440 bernneq2 10576 shftval2 10768 shftval4 10770 crim 10800 resqrexlemover 10952 climshft2 11247 summodclem3 11321 binom1dif 11428 isumshft 11431 arisum 11439 mertenslemi1 11476 addcos 11687 demoivreALT 11714 dvdsaddr 11777 divalgb 11862 hashdvds 12153 pythagtriplem2 12198 ioo2bl 13183 reeff1olem 13332 ptolemy 13385 |
Copyright terms: Public domain | W3C validator |