| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcom | GIF version | ||
| Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| addcom | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addcom 8032 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 |
| This theorem was proved from axioms: ax-addcom 8032 |
| This theorem is referenced by: addlid 8218 readdcan 8219 addcomi 8223 addcomd 8230 add12 8237 add32 8238 add42 8241 cnegexlem1 8254 cnegexlem3 8256 cnegex2 8258 subsub23 8284 pncan2 8286 addsub 8290 addsub12 8292 addsubeq4 8294 sub32 8313 pnpcan2 8319 ppncan 8321 sub4 8324 negsubdi2 8338 ltadd2 8499 ltaddnegr 8505 ltaddsub2 8517 leaddsub2 8519 leltadd 8527 ltaddpos2 8533 addge02 8553 conjmulap 8809 recreclt 8980 avgle1 9285 avgle2 9286 nn0nnaddcl 9333 xaddcom 9990 fzen 10172 fzshftral 10237 fzo0addelr 10325 flqzadd 10448 addmodidr 10525 nn0ennn 10585 ser3add 10674 bernneq2 10813 ccatrn 11073 shftval2 11181 shftval4 11183 crim 11213 resqrexlemover 11365 climshft2 11661 summodclem3 11735 binom1dif 11842 isumshft 11845 arisum 11853 mertenslemi1 11890 addcos 12101 demoivreALT 12129 dvdsaddr 12192 divalgb 12280 hashdvds 12587 pythagtriplem2 12633 mulgnndir 13531 cncrng 14375 ioo2bl 15067 reeff1olem 15287 ptolemy 15340 wilthlem1 15496 1sgmprm 15510 perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |