ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcl GIF version

Axiom ax-mulcl 7847
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7803. Proofs should normally use mulcl 7876 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7747 . . . 4 class
31, 2wcel 2136 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2136 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 103 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 7754 . . . 4 class ·
81, 4, 7co 5841 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2136 . 2 wff (𝐴 · 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
This axiom is referenced by:  mulcl  7876
  Copyright terms: Public domain W3C validator