![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-mulcl | GIF version |
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7926. Proofs should normally use mulcl 7999 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7870 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2164 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2164 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | cmul 7877 | . . . 4 class · | |
8 | 1, 4, 7 | co 5918 | . . 3 class (𝐴 · 𝐵) |
9 | 8, 2 | wcel 2164 | . 2 wff (𝐴 · 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
This axiom is referenced by: mulcl 7999 |
Copyright terms: Public domain | W3C validator |