| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-mulcl | GIF version | ||
| Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7952. Proofs should normally use mulcl 8025 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7896 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2167 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2167 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | 3, 5 | wa 104 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
| 7 | cmul 7903 | . . . 4 class · | |
| 8 | 1, 4, 7 | co 5925 | . . 3 class (𝐴 · 𝐵) |
| 9 | 8, 2 | wcel 2167 | . 2 wff (𝐴 · 𝐵) ∈ ℂ |
| 10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| Colors of variables: wff set class |
| This axiom is referenced by: mulcl 8025 |
| Copyright terms: Public domain | W3C validator |