ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcl GIF version

Axiom ax-mulcl 8105
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 8061. Proofs should normally use mulcl 8134 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 8005 . . . 4 class
31, 2wcel 2200 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2200 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 8012 . . . 4 class ·
81, 4, 7co 6007 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2200 . 2 wff (𝐴 · 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
This axiom is referenced by:  mulcl  8134
  Copyright terms: Public domain W3C validator