ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcl GIF version

Axiom ax-mulcl 7970
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7926. Proofs should normally use mulcl 7999 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7870 . . . 4 class
31, 2wcel 2164 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2164 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 7877 . . . 4 class ·
81, 4, 7co 5918 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2164 . 2 wff (𝐴 · 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
This axiom is referenced by:  mulcl  7999
  Copyright terms: Public domain W3C validator