ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcl GIF version

Axiom ax-mulcl 7996
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7952. Proofs should normally use mulcl 8025 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7896 . . . 4 class
31, 2wcel 2167 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2167 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 104 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 7903 . . . 4 class ·
81, 4, 7co 5925 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2167 . 2 wff (𝐴 · 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff set class
This axiom is referenced by:  mulcl  8025
  Copyright terms: Public domain W3C validator