Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-mulcl | GIF version |
Description: Closure law for multiplication of complex numbers. Axiom for real and complex numbers, justified by Theorem axmulcl 7803. Proofs should normally use mulcl 7876 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7747 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2136 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2136 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 103 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | cmul 7754 | . . . 4 class · | |
8 | 1, 4, 7 | co 5841 | . . 3 class (𝐴 · 𝐵) |
9 | 8, 2 | wcel 2136 | . 2 wff (𝐴 · 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff set class |
This axiom is referenced by: mulcl 7876 |
Copyright terms: Public domain | W3C validator |