![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axaddrcl | GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7969 be used later. Instead, in most cases use readdcl 7998. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7888 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 7888 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | oveq1 5925 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = (𝐴 + 〈𝑦, 0R〉)) | |
4 | 3 | eleq1d 2262 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 〈𝑦, 0R〉) ∈ ℝ)) |
5 | oveq2 5926 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 + 〈𝑦, 0R〉) = (𝐴 + 𝐵)) | |
6 | 5 | eleq1d 2262 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ)) |
7 | addresr 7897 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = 〈(𝑥 +R 𝑦), 0R〉) | |
8 | addclsr 7813 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
9 | opelreal 7887 | . . . 4 ⊢ (〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 134 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ) |
11 | 7, 10 | eqeltrd 2270 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 2793 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 〈cop 3621 (class class class)co 5918 Rcnr 7357 0Rc0r 7358 +R cplr 7361 ℝcr 7871 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-2o 6470 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-enq0 7484 df-nq0 7485 df-0nq0 7486 df-plq0 7487 df-mq0 7488 df-inp 7526 df-i1p 7527 df-iplp 7528 df-enr 7786 df-nr 7787 df-plr 7788 df-0r 7791 df-c 7878 df-r 7882 df-add 7883 |
This theorem is referenced by: peano5nnnn 7952 |
Copyright terms: Public domain | W3C validator |