Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axaddrcl | GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 7823 be used later. Instead, in most cases use readdcl 7852. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elreal 7742 | . 2 ⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | |
2 | elreal 7742 | . 2 ⊢ (𝐵 ∈ ℝ ↔ ∃𝑦 ∈ R 〈𝑦, 0R〉 = 𝐵) | |
3 | oveq1 5828 | . . 3 ⊢ (〈𝑥, 0R〉 = 𝐴 → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = (𝐴 + 〈𝑦, 0R〉)) | |
4 | 3 | eleq1d 2226 | . 2 ⊢ (〈𝑥, 0R〉 = 𝐴 → ((〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 〈𝑦, 0R〉) ∈ ℝ)) |
5 | oveq2 5829 | . . 3 ⊢ (〈𝑦, 0R〉 = 𝐵 → (𝐴 + 〈𝑦, 0R〉) = (𝐴 + 𝐵)) | |
6 | 5 | eleq1d 2226 | . 2 ⊢ (〈𝑦, 0R〉 = 𝐵 → ((𝐴 + 〈𝑦, 0R〉) ∈ ℝ ↔ (𝐴 + 𝐵) ∈ ℝ)) |
7 | addresr 7751 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) = 〈(𝑥 +R 𝑦), 0R〉) | |
8 | addclsr 7667 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (𝑥 +R 𝑦) ∈ R) | |
9 | opelreal 7741 | . . . 4 ⊢ (〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ ↔ (𝑥 +R 𝑦) ∈ R) | |
10 | 8, 9 | sylibr 133 | . . 3 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → 〈(𝑥 +R 𝑦), 0R〉 ∈ ℝ) |
11 | 7, 10 | eqeltrd 2234 | . 2 ⊢ ((𝑥 ∈ R ∧ 𝑦 ∈ R) → (〈𝑥, 0R〉 + 〈𝑦, 0R〉) ∈ ℝ) |
12 | 1, 2, 4, 6, 11 | 2gencl 2745 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 〈cop 3563 (class class class)co 5821 Rcnr 7211 0Rc0r 7212 +R cplr 7215 ℝcr 7725 + caddc 7729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-1o 6360 df-2o 6361 df-oadd 6364 df-omul 6365 df-er 6477 df-ec 6479 df-qs 6483 df-ni 7218 df-pli 7219 df-mi 7220 df-lti 7221 df-plpq 7258 df-mpq 7259 df-enq 7261 df-nqqs 7262 df-plqqs 7263 df-mqqs 7264 df-1nqqs 7265 df-rq 7266 df-ltnqqs 7267 df-enq0 7338 df-nq0 7339 df-0nq0 7340 df-plq0 7341 df-mq0 7342 df-inp 7380 df-i1p 7381 df-iplp 7382 df-enr 7640 df-nr 7641 df-plr 7642 df-0r 7645 df-c 7732 df-r 7736 df-add 7737 |
This theorem is referenced by: peano5nnnn 7806 |
Copyright terms: Public domain | W3C validator |