![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7432, for naming consistency with readdcli 7491. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7432 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1438 (class class class)co 5644 ℝcr 7339 + caddc 7343 |
This theorem was proved from axioms: ax-addrcl 7432 |
This theorem is referenced by: 0re 7478 readdcli 7491 readdcld 7507 axltadd 7546 peano2re 7608 cnegexlem3 7649 cnegex 7650 resubcl 7736 ltleadd 7914 ltaddsublt 8038 recexap 8112 recreclt 8351 cju 8411 nnge1 8435 addltmul 8642 avglt1 8644 avglt2 8645 avgle1 8646 avgle2 8647 nzadd 8792 irradd 9121 rpaddcl 9147 iooshf 9360 ge0addcl 9389 icoshft 9397 icoshftf1o 9398 iccshftr 9401 difelfznle 9534 elfzodifsumelfzo 9600 subfzo0 9641 serfre 9889 isermono 9894 ser3ge0 9940 bernneq 10062 faclbnd6 10140 readd 10291 imadd 10299 elicc4abs 10515 caubnd2 10538 maxabsle 10625 maxabslemval 10629 maxcl 10631 mulcn2 10688 climserle 10721 fsumrecl 10782 mertenslem2 10917 ege2le3 10948 eftlub 10967 efgt1 10974 |
Copyright terms: Public domain | W3C validator |