| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcl | GIF version | ||
| Description: Alias for ax-addrcl 7976, for naming consistency with readdcli 8039. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addrcl 7976 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 (class class class)co 5922 ℝcr 7878 + caddc 7882 |
| This theorem was proved from axioms: ax-addrcl 7976 |
| This theorem is referenced by: 0re 8026 readdcli 8039 readdcld 8056 axltadd 8096 peano2re 8162 cnegexlem3 8203 cnegex 8204 resubcl 8290 ltleadd 8473 ltaddsublt 8598 recexap 8680 recreclt 8927 cju 8988 nnge1 9013 addltmul 9228 avglt1 9230 avglt2 9231 avgle1 9232 avgle2 9233 nzadd 9378 irradd 9720 rpaddcl 9752 xaddnemnf 9932 xaddnepnf 9933 xnegdi 9943 xaddass 9944 xltadd1 9951 iooshf 10027 ge0addcl 10056 icoshft 10065 icoshftf1o 10066 iccshftr 10069 difelfznle 10210 elfzodifsumelfzo 10277 subfzo0 10318 serfre 10576 ser3mono 10579 ser3ge0 10628 bernneq 10752 faclbnd6 10836 readd 11034 imadd 11042 elicc4abs 11259 caubnd2 11282 maxabsle 11369 maxabslemval 11373 maxcl 11375 mulcn2 11477 climserle 11510 fsumrecl 11566 mertenslem2 11701 ege2le3 11836 eftlub 11855 efgt1 11862 pythagtriplem12 12444 pythagtriplem14 12446 pythagtriplem16 12448 xmeter 14672 bl2ioo 14786 ioo2bl 14787 ioo2blex 14788 blssioo 14789 tangtx 15074 relogmul 15105 |
| Copyright terms: Public domain | W3C validator |