![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7971, for naming consistency with readdcli 8034. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7971 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 (class class class)co 5919 ℝcr 7873 + caddc 7877 |
This theorem was proved from axioms: ax-addrcl 7971 |
This theorem is referenced by: 0re 8021 readdcli 8034 readdcld 8051 axltadd 8091 peano2re 8157 cnegexlem3 8198 cnegex 8199 resubcl 8285 ltleadd 8467 ltaddsublt 8592 recexap 8674 recreclt 8921 cju 8982 nnge1 9007 addltmul 9222 avglt1 9224 avglt2 9225 avgle1 9226 avgle2 9227 nzadd 9372 irradd 9714 rpaddcl 9746 xaddnemnf 9926 xaddnepnf 9927 xnegdi 9937 xaddass 9938 xltadd1 9945 iooshf 10021 ge0addcl 10050 icoshft 10059 icoshftf1o 10060 iccshftr 10063 difelfznle 10204 elfzodifsumelfzo 10271 subfzo0 10312 serfre 10558 ser3mono 10561 ser3ge0 10610 bernneq 10734 faclbnd6 10818 readd 11016 imadd 11024 elicc4abs 11241 caubnd2 11264 maxabsle 11351 maxabslemval 11355 maxcl 11357 mulcn2 11458 climserle 11491 fsumrecl 11547 mertenslem2 11682 ege2le3 11817 eftlub 11836 efgt1 11843 pythagtriplem12 12416 pythagtriplem14 12418 pythagtriplem16 12420 xmeter 14615 bl2ioo 14729 ioo2bl 14730 ioo2blex 14731 blssioo 14732 tangtx 15014 relogmul 15045 |
Copyright terms: Public domain | W3C validator |