![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7907, for naming consistency with readdcli 7969. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7907 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 (class class class)co 5874 ℝcr 7809 + caddc 7813 |
This theorem was proved from axioms: ax-addrcl 7907 |
This theorem is referenced by: 0re 7956 readdcli 7969 readdcld 7986 axltadd 8026 peano2re 8092 cnegexlem3 8133 cnegex 8134 resubcl 8220 ltleadd 8402 ltaddsublt 8527 recexap 8609 recreclt 8856 cju 8917 nnge1 8941 addltmul 9154 avglt1 9156 avglt2 9157 avgle1 9158 avgle2 9159 nzadd 9304 irradd 9645 rpaddcl 9676 xaddnemnf 9856 xaddnepnf 9857 xnegdi 9867 xaddass 9868 xltadd1 9875 iooshf 9951 ge0addcl 9980 icoshft 9989 icoshftf1o 9990 iccshftr 9993 difelfznle 10134 elfzodifsumelfzo 10200 subfzo0 10241 serfre 10474 ser3mono 10477 ser3ge0 10516 bernneq 10640 faclbnd6 10723 readd 10877 imadd 10885 elicc4abs 11102 caubnd2 11125 maxabsle 11212 maxabslemval 11216 maxcl 11218 mulcn2 11319 climserle 11352 fsumrecl 11408 mertenslem2 11543 ege2le3 11678 eftlub 11697 efgt1 11704 pythagtriplem12 12274 pythagtriplem14 12276 pythagtriplem16 12278 xmeter 13906 bl2ioo 14012 ioo2bl 14013 ioo2blex 14014 blssioo 14015 tangtx 14229 relogmul 14260 |
Copyright terms: Public domain | W3C validator |