| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcl | GIF version | ||
| Description: Alias for ax-addrcl 7995, for naming consistency with readdcli 8058. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addrcl 7995 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 (class class class)co 5925 ℝcr 7897 + caddc 7901 |
| This theorem was proved from axioms: ax-addrcl 7995 |
| This theorem is referenced by: 0re 8045 readdcli 8058 readdcld 8075 axltadd 8115 peano2re 8181 cnegexlem3 8222 cnegex 8223 resubcl 8309 ltleadd 8492 ltaddsublt 8617 recexap 8699 recreclt 8946 cju 9007 nnge1 9032 addltmul 9247 avglt1 9249 avglt2 9250 avgle1 9251 avgle2 9252 nzadd 9397 irradd 9739 rpaddcl 9771 xaddnemnf 9951 xaddnepnf 9952 xnegdi 9962 xaddass 9963 xltadd1 9970 iooshf 10046 ge0addcl 10075 icoshft 10084 icoshftf1o 10085 iccshftr 10088 difelfznle 10229 elfzodifsumelfzo 10296 subfzo0 10337 serfre 10595 ser3mono 10598 ser3ge0 10647 bernneq 10771 faclbnd6 10855 readd 11053 imadd 11061 elicc4abs 11278 caubnd2 11301 maxabsle 11388 maxabslemval 11392 maxcl 11394 mulcn2 11496 climserle 11529 fsumrecl 11585 mertenslem2 11720 ege2le3 11855 eftlub 11874 efgt1 11881 pythagtriplem12 12471 pythagtriplem14 12473 pythagtriplem16 12475 xmeter 14758 bl2ioo 14872 ioo2bl 14873 ioo2blex 14874 blssioo 14875 tangtx 15160 relogmul 15191 |
| Copyright terms: Public domain | W3C validator |