| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcl | GIF version | ||
| Description: Alias for ax-addrcl 8029, for naming consistency with readdcli 8092. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addrcl 8029 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 (class class class)co 5951 ℝcr 7931 + caddc 7935 |
| This theorem was proved from axioms: ax-addrcl 8029 |
| This theorem is referenced by: 0re 8079 readdcli 8092 readdcld 8109 axltadd 8149 peano2re 8215 cnegexlem3 8256 cnegex 8257 resubcl 8343 ltleadd 8526 ltaddsublt 8651 recexap 8733 recreclt 8980 cju 9041 nnge1 9066 addltmul 9281 avglt1 9283 avglt2 9284 avgle1 9285 avgle2 9286 nzadd 9432 irradd 9774 rpaddcl 9806 xaddnemnf 9986 xaddnepnf 9987 xnegdi 9997 xaddass 9998 xltadd1 10005 iooshf 10081 ge0addcl 10110 icoshft 10119 icoshftf1o 10120 iccshftr 10123 difelfznle 10264 elfzodifsumelfzo 10337 subfzo0 10378 serfre 10636 ser3mono 10639 ser3ge0 10688 bernneq 10812 faclbnd6 10896 ccatsymb 11066 swrdswrdlem 11163 readd 11224 imadd 11232 elicc4abs 11449 caubnd2 11472 maxabsle 11559 maxabslemval 11563 maxcl 11565 mulcn2 11667 climserle 11700 fsumrecl 11756 mertenslem2 11891 ege2le3 12026 eftlub 12045 efgt1 12052 pythagtriplem12 12642 pythagtriplem14 12644 pythagtriplem16 12646 xmeter 14952 bl2ioo 15066 ioo2bl 15067 ioo2blex 15068 blssioo 15069 tangtx 15354 relogmul 15385 |
| Copyright terms: Public domain | W3C validator |