![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7921, for naming consistency with readdcli 7983. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7921 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 (class class class)co 5888 ℝcr 7823 + caddc 7827 |
This theorem was proved from axioms: ax-addrcl 7921 |
This theorem is referenced by: 0re 7970 readdcli 7983 readdcld 8000 axltadd 8040 peano2re 8106 cnegexlem3 8147 cnegex 8148 resubcl 8234 ltleadd 8416 ltaddsublt 8541 recexap 8623 recreclt 8870 cju 8931 nnge1 8955 addltmul 9168 avglt1 9170 avglt2 9171 avgle1 9172 avgle2 9173 nzadd 9318 irradd 9659 rpaddcl 9690 xaddnemnf 9870 xaddnepnf 9871 xnegdi 9881 xaddass 9882 xltadd1 9889 iooshf 9965 ge0addcl 9994 icoshft 10003 icoshftf1o 10004 iccshftr 10007 difelfznle 10148 elfzodifsumelfzo 10214 subfzo0 10255 serfre 10488 ser3mono 10491 ser3ge0 10530 bernneq 10654 faclbnd6 10737 readd 10891 imadd 10899 elicc4abs 11116 caubnd2 11139 maxabsle 11226 maxabslemval 11230 maxcl 11232 mulcn2 11333 climserle 11366 fsumrecl 11422 mertenslem2 11557 ege2le3 11692 eftlub 11711 efgt1 11718 pythagtriplem12 12288 pythagtriplem14 12290 pythagtriplem16 12292 xmeter 14207 bl2ioo 14313 ioo2bl 14314 ioo2blex 14315 blssioo 14316 tangtx 14530 relogmul 14561 |
Copyright terms: Public domain | W3C validator |