![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7969, for naming consistency with readdcli 8032. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7969 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 (class class class)co 5918 ℝcr 7871 + caddc 7875 |
This theorem was proved from axioms: ax-addrcl 7969 |
This theorem is referenced by: 0re 8019 readdcli 8032 readdcld 8049 axltadd 8089 peano2re 8155 cnegexlem3 8196 cnegex 8197 resubcl 8283 ltleadd 8465 ltaddsublt 8590 recexap 8672 recreclt 8919 cju 8980 nnge1 9005 addltmul 9219 avglt1 9221 avglt2 9222 avgle1 9223 avgle2 9224 nzadd 9369 irradd 9711 rpaddcl 9743 xaddnemnf 9923 xaddnepnf 9924 xnegdi 9934 xaddass 9935 xltadd1 9942 iooshf 10018 ge0addcl 10047 icoshft 10056 icoshftf1o 10057 iccshftr 10060 difelfznle 10201 elfzodifsumelfzo 10268 subfzo0 10309 serfre 10555 ser3mono 10558 ser3ge0 10607 bernneq 10731 faclbnd6 10815 readd 11013 imadd 11021 elicc4abs 11238 caubnd2 11261 maxabsle 11348 maxabslemval 11352 maxcl 11354 mulcn2 11455 climserle 11488 fsumrecl 11544 mertenslem2 11679 ege2le3 11814 eftlub 11833 efgt1 11840 pythagtriplem12 12413 pythagtriplem14 12415 pythagtriplem16 12417 xmeter 14604 bl2ioo 14710 ioo2bl 14711 ioo2blex 14712 blssioo 14713 tangtx 14973 relogmul 15004 |
Copyright terms: Public domain | W3C validator |