![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7910, for naming consistency with readdcli 7972. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7910 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 (class class class)co 5877 ℝcr 7812 + caddc 7816 |
This theorem was proved from axioms: ax-addrcl 7910 |
This theorem is referenced by: 0re 7959 readdcli 7972 readdcld 7989 axltadd 8029 peano2re 8095 cnegexlem3 8136 cnegex 8137 resubcl 8223 ltleadd 8405 ltaddsublt 8530 recexap 8612 recreclt 8859 cju 8920 nnge1 8944 addltmul 9157 avglt1 9159 avglt2 9160 avgle1 9161 avgle2 9162 nzadd 9307 irradd 9648 rpaddcl 9679 xaddnemnf 9859 xaddnepnf 9860 xnegdi 9870 xaddass 9871 xltadd1 9878 iooshf 9954 ge0addcl 9983 icoshft 9992 icoshftf1o 9993 iccshftr 9996 difelfznle 10137 elfzodifsumelfzo 10203 subfzo0 10244 serfre 10477 ser3mono 10480 ser3ge0 10519 bernneq 10643 faclbnd6 10726 readd 10880 imadd 10888 elicc4abs 11105 caubnd2 11128 maxabsle 11215 maxabslemval 11219 maxcl 11221 mulcn2 11322 climserle 11355 fsumrecl 11411 mertenslem2 11546 ege2le3 11681 eftlub 11700 efgt1 11707 pythagtriplem12 12277 pythagtriplem14 12279 pythagtriplem16 12281 xmeter 13975 bl2ioo 14081 ioo2bl 14082 ioo2blex 14083 blssioo 14084 tangtx 14298 relogmul 14329 |
Copyright terms: Public domain | W3C validator |