| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcl | GIF version | ||
| Description: Alias for ax-addrcl 8104, for naming consistency with readdcli 8167. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addrcl 8104 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 (class class class)co 6007 ℝcr 8006 + caddc 8010 |
| This theorem was proved from axioms: ax-addrcl 8104 |
| This theorem is referenced by: 0re 8154 readdcli 8167 readdcld 8184 axltadd 8224 peano2re 8290 cnegexlem3 8331 cnegex 8332 resubcl 8418 ltleadd 8601 ltaddsublt 8726 recexap 8808 recreclt 9055 cju 9116 nnge1 9141 addltmul 9356 avglt1 9358 avglt2 9359 avgle1 9360 avgle2 9361 nzadd 9507 irradd 9849 rpaddcl 9881 xaddnemnf 10061 xaddnepnf 10062 xnegdi 10072 xaddass 10073 xltadd1 10080 iooshf 10156 ge0addcl 10185 icoshft 10194 icoshftf1o 10195 iccshftr 10198 difelfznle 10339 elfzodifsumelfzo 10415 subfzo0 10456 serfre 10714 ser3mono 10717 ser3ge0 10766 bernneq 10890 faclbnd6 10974 ccatsymb 11145 swrdswrdlem 11244 swrdccatin2 11269 readd 11388 imadd 11396 elicc4abs 11613 caubnd2 11636 maxabsle 11723 maxabslemval 11727 maxcl 11729 mulcn2 11831 climserle 11864 fsumrecl 11920 mertenslem2 12055 ege2le3 12190 eftlub 12209 efgt1 12216 pythagtriplem12 12806 pythagtriplem14 12808 pythagtriplem16 12810 xmeter 15118 bl2ioo 15232 ioo2bl 15233 ioo2blex 15234 blssioo 15235 tangtx 15520 relogmul 15551 |
| Copyright terms: Public domain | W3C validator |