Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > readdcl | GIF version |
Description: Alias for ax-addrcl 7846, for naming consistency with readdcli 7908. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addrcl 7846 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 (class class class)co 5841 ℝcr 7748 + caddc 7752 |
This theorem was proved from axioms: ax-addrcl 7846 |
This theorem is referenced by: 0re 7895 readdcli 7908 readdcld 7924 axltadd 7964 peano2re 8030 cnegexlem3 8071 cnegex 8072 resubcl 8158 ltleadd 8340 ltaddsublt 8465 recexap 8546 recreclt 8791 cju 8852 nnge1 8876 addltmul 9089 avglt1 9091 avglt2 9092 avgle1 9093 avgle2 9094 nzadd 9239 irradd 9580 rpaddcl 9609 xaddnemnf 9789 xaddnepnf 9790 xnegdi 9800 xaddass 9801 xltadd1 9808 iooshf 9884 ge0addcl 9913 icoshft 9922 icoshftf1o 9923 iccshftr 9926 difelfznle 10066 elfzodifsumelfzo 10132 subfzo0 10173 serfre 10406 ser3mono 10409 ser3ge0 10448 bernneq 10571 faclbnd6 10653 readd 10807 imadd 10815 elicc4abs 11032 caubnd2 11055 maxabsle 11142 maxabslemval 11146 maxcl 11148 mulcn2 11249 climserle 11282 fsumrecl 11338 mertenslem2 11473 ege2le3 11608 eftlub 11627 efgt1 11634 pythagtriplem12 12203 pythagtriplem14 12205 pythagtriplem16 12207 xmeter 13036 bl2ioo 13142 ioo2bl 13143 ioo2blex 13144 blssioo 13145 tangtx 13359 relogmul 13390 |
Copyright terms: Public domain | W3C validator |