| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcl | GIF version | ||
| Description: Alias for ax-addrcl 8064, for naming consistency with readdcli 8127. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| readdcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addrcl 8064 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 (class class class)co 5974 ℝcr 7966 + caddc 7970 |
| This theorem was proved from axioms: ax-addrcl 8064 |
| This theorem is referenced by: 0re 8114 readdcli 8127 readdcld 8144 axltadd 8184 peano2re 8250 cnegexlem3 8291 cnegex 8292 resubcl 8378 ltleadd 8561 ltaddsublt 8686 recexap 8768 recreclt 9015 cju 9076 nnge1 9101 addltmul 9316 avglt1 9318 avglt2 9319 avgle1 9320 avgle2 9321 nzadd 9467 irradd 9809 rpaddcl 9841 xaddnemnf 10021 xaddnepnf 10022 xnegdi 10032 xaddass 10033 xltadd1 10040 iooshf 10116 ge0addcl 10145 icoshft 10154 icoshftf1o 10155 iccshftr 10158 difelfznle 10299 elfzodifsumelfzo 10374 subfzo0 10415 serfre 10673 ser3mono 10676 ser3ge0 10725 bernneq 10849 faclbnd6 10933 ccatsymb 11103 swrdswrdlem 11202 swrdccatin2 11227 readd 11346 imadd 11354 elicc4abs 11571 caubnd2 11594 maxabsle 11681 maxabslemval 11685 maxcl 11687 mulcn2 11789 climserle 11822 fsumrecl 11878 mertenslem2 12013 ege2le3 12148 eftlub 12167 efgt1 12174 pythagtriplem12 12764 pythagtriplem14 12766 pythagtriplem16 12768 xmeter 15075 bl2ioo 15189 ioo2bl 15190 ioo2blex 15191 blssioo 15192 tangtx 15477 relogmul 15508 |
| Copyright terms: Public domain | W3C validator |