ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 GIF version

Theorem hbe1 1519
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1517 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wex 1516
This theorem was proved from axioms:  ax-ie1 1517
This theorem is referenced by:  nfe1  1520  19.8a  1614  exim  1623  19.43  1652  hbex  1660  excomim  1687  19.38  1700  exan  1717  equs5e  1819  exdistrfor  1824  hbmo1  2093  euan  2111  euor2  2113  eupicka  2135  mopick2  2138  moexexdc  2139  2moex  2141  2euex  2142  2exeu  2147  2eu4  2148  2eu7  2149
  Copyright terms: Public domain W3C validator