Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ie1 1481 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-ie1 1481 |
This theorem is referenced by: nfe1 1484 19.8a 1578 exim 1587 19.43 1616 hbex 1624 excomim 1651 19.38 1664 exan 1681 equs5e 1783 exdistrfor 1788 hbmo1 2052 euan 2070 euor2 2072 eupicka 2094 mopick2 2097 moexexdc 2098 2moex 2100 2euex 2101 2exeu 2106 2eu4 2107 2eu7 2108 |
Copyright terms: Public domain | W3C validator |