| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbe1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ie1 1517 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-ie1 1517 |
| This theorem is referenced by: nfe1 1520 19.8a 1614 exim 1623 19.43 1652 hbex 1660 excomim 1687 19.38 1700 exan 1717 equs5e 1819 exdistrfor 1824 hbmo1 2093 euan 2111 euor2 2113 eupicka 2135 mopick2 2138 moexexdc 2139 2moex 2141 2euex 2142 2exeu 2147 2eu4 2148 2eu7 2149 |
| Copyright terms: Public domain | W3C validator |