ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 GIF version

Theorem hbe1 1452
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1450 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1310  wex 1449
This theorem was proved from axioms:  ax-ie1 1450
This theorem is referenced by:  nfe1  1453  19.8a  1550  exim  1559  19.43  1588  hbex  1596  excomim  1622  19.38  1635  exan  1652  equs5e  1747  exdistrfor  1752  hbmo1  2011  euan  2029  euor2  2031  eupicka  2053  mopick2  2056  moexexdc  2057  2moex  2059  2euex  2060  2exeu  2065  2eu4  2066  2eu7  2067
  Copyright terms: Public domain W3C validator