![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ie1 1450 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1310 ∃wex 1449 |
This theorem was proved from axioms: ax-ie1 1450 |
This theorem is referenced by: nfe1 1453 19.8a 1550 exim 1559 19.43 1588 hbex 1596 excomim 1622 19.38 1635 exan 1652 equs5e 1747 exdistrfor 1752 hbmo1 2011 euan 2029 euor2 2031 eupicka 2053 mopick2 2056 moexexdc 2057 2moex 2059 2euex 2060 2exeu 2065 2eu4 2066 2eu7 2067 |
Copyright terms: Public domain | W3C validator |