ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 GIF version

Theorem hbe1 1495
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1493 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351  wex 1492
This theorem was proved from axioms:  ax-ie1 1493
This theorem is referenced by:  nfe1  1496  19.8a  1590  exim  1599  19.43  1628  hbex  1636  excomim  1663  19.38  1676  exan  1693  equs5e  1795  exdistrfor  1800  hbmo1  2064  euan  2082  euor2  2084  eupicka  2106  mopick2  2109  moexexdc  2110  2moex  2112  2euex  2113  2exeu  2118  2eu4  2119  2eu7  2120
  Copyright terms: Public domain W3C validator