![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ie1 1493 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∃wex 1492 |
This theorem was proved from axioms: ax-ie1 1493 |
This theorem is referenced by: nfe1 1496 19.8a 1590 exim 1599 19.43 1628 hbex 1636 excomim 1663 19.38 1676 exan 1693 equs5e 1795 exdistrfor 1800 hbmo1 2064 euan 2082 euor2 2084 eupicka 2106 mopick2 2109 moexexdc 2110 2moex 2112 2euex 2113 2exeu 2118 2eu4 2119 2eu7 2120 |
Copyright terms: Public domain | W3C validator |