ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 GIF version

Theorem hbe1 1506
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1504 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wex 1503
This theorem was proved from axioms:  ax-ie1 1504
This theorem is referenced by:  nfe1  1507  19.8a  1601  exim  1610  19.43  1639  hbex  1647  excomim  1674  19.38  1687  exan  1704  equs5e  1806  exdistrfor  1811  hbmo1  2080  euan  2098  euor2  2100  eupicka  2122  mopick2  2125  moexexdc  2126  2moex  2128  2euex  2129  2exeu  2134  2eu4  2135  2eu7  2136
  Copyright terms: Public domain W3C validator