Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbe1 | GIF version |
Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ie1 1486 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-ie1 1486 |
This theorem is referenced by: nfe1 1489 19.8a 1583 exim 1592 19.43 1621 hbex 1629 excomim 1656 19.38 1669 exan 1686 equs5e 1788 exdistrfor 1793 hbmo1 2057 euan 2075 euor2 2077 eupicka 2099 mopick2 2102 moexexdc 2103 2moex 2105 2euex 2106 2exeu 2111 2eu4 2112 2eu7 2113 |
Copyright terms: Public domain | W3C validator |