ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1 GIF version

Theorem hbe1 1541
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 ax-ie1 1539 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wex 1538
This theorem was proved from axioms:  ax-ie1 1539
This theorem is referenced by:  nfe1  1542  19.8a  1636  exim  1645  19.43  1674  hbex  1682  excomim  1709  19.38  1722  exan  1739  equs5e  1841  exdistrfor  1846  hbmo1  2115  euan  2134  euor2  2136  eupicka  2158  mopick2  2161  moexexdc  2162  2moex  2164  2euex  2165  2exeu  2170  2eu4  2171  2eu7  2172
  Copyright terms: Public domain W3C validator