| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbe1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ie1 1539 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-ie1 1539 |
| This theorem is referenced by: nfe1 1542 19.8a 1636 exim 1645 19.43 1674 hbex 1682 excomim 1709 19.38 1722 exan 1739 equs5e 1841 exdistrfor 1846 hbmo1 2115 euan 2134 euor2 2136 eupicka 2158 mopick2 2161 moexexdc 2162 2moex 2164 2euex 2165 2exeu 2170 2eu4 2171 2eu7 2172 |
| Copyright terms: Public domain | W3C validator |