Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex GIF version

Theorem bj-ex 15898
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1622 and 19.9ht 1665 or 19.23ht 1521). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1518 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜑) ↔ (∃𝑥𝜑𝜑)))
2 ax-17 1550 . . 3 (𝜑 → ∀𝑥𝜑)
31, 2mpg 1475 . 2 (∀𝑥(𝜑𝜑) ↔ (∃𝑥𝜑𝜑))
4 id 19 . 2 (𝜑𝜑)
53, 4mpgbi 1476 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1473  ax-ie2 1518  ax-17 1550
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-d0clsepcl  16060  bj-inf2vnlem1  16105  bj-nn0sucALT  16113
  Copyright terms: Public domain W3C validator