Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex GIF version

Theorem bj-ex 15660
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1620 and 19.9ht 1663 or 19.23ht 1519). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1516 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜑) ↔ (∃𝑥𝜑𝜑)))
2 ax-17 1548 . . 3 (𝜑 → ∀𝑥𝜑)
31, 2mpg 1473 . 2 (∀𝑥(𝜑𝜑) ↔ (∃𝑥𝜑𝜑))
4 id 19 . 2 (𝜑𝜑)
53, 4mpgbi 1474 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1471  ax-ie2 1516  ax-17 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-d0clsepcl  15823  bj-inf2vnlem1  15868  bj-nn0sucALT  15876
  Copyright terms: Public domain W3C validator