![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-ex | GIF version |
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1609 and 19.9ht 1652 or 19.23ht 1508). (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-ex | ⊢ (∃𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-ie2 1505 | . . 3 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑 → 𝜑) ↔ (∃𝑥𝜑 → 𝜑))) | |
2 | ax-17 1537 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1462 | . 2 ⊢ (∀𝑥(𝜑 → 𝜑) ↔ (∃𝑥𝜑 → 𝜑)) |
4 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
5 | 3, 4 | mpgbi 1463 | 1 ⊢ (∃𝑥𝜑 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: bj-d0clsepcl 15417 bj-inf2vnlem1 15462 bj-nn0sucALT 15470 |
Copyright terms: Public domain | W3C validator |