Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ex GIF version

Theorem bj-ex 15698
Description: Existential generalization. (Contributed by BJ, 8-Dec-2019.) Proof modification is discouraged because there are shorter proofs, but using less basic results (like exlimiv 1621 and 19.9ht 1664 or 19.23ht 1520). (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ex (∃𝑥𝜑𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem bj-ex
StepHypRef Expression
1 ax-ie2 1517 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜑) ↔ (∃𝑥𝜑𝜑)))
2 ax-17 1549 . . 3 (𝜑 → ∀𝑥𝜑)
31, 2mpg 1474 . 2 (∀𝑥(𝜑𝜑) ↔ (∃𝑥𝜑𝜑))
4 id 19 . 2 (𝜑𝜑)
53, 4mpgbi 1475 1 (∃𝑥𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1472  ax-ie2 1517  ax-17 1549
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bj-d0clsepcl  15861  bj-inf2vnlem1  15906  bj-nn0sucALT  15914
  Copyright terms: Public domain W3C validator