| Step | Hyp | Ref
| Expression |
| 1 | | dfcnqs 7925 |
. 2
⊢ ℂ =
((R × R) / ◡ E ) |
| 2 | | mulcnsrec 7927 |
. 2
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R)) → ([〈𝑥, 𝑦〉]◡ E · [〈𝑧, 𝑤〉]◡ E ) = [〈((𝑥 ·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))), ((𝑦 ·R 𝑧) +R
(𝑥
·R 𝑤))〉]◡ E ) |
| 3 | | mulcnsrec 7927 |
. 2
⊢ (((𝑧 ∈ R ∧
𝑤 ∈ R)
∧ (𝑣 ∈
R ∧ 𝑢
∈ R)) → ([〈𝑧, 𝑤〉]◡ E · [〈𝑣, 𝑢〉]◡ E ) = [〈((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))), ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))〉]◡ E ) |
| 4 | | mulcnsrec 7927 |
. 2
⊢
(((((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ∈ R ∧ ((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ∈ R) ∧ (𝑣 ∈ R ∧
𝑢 ∈ R))
→ ([〈((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))), ((𝑦 ·R 𝑧) +R
(𝑥
·R 𝑤))〉]◡ E · [〈𝑣, 𝑢〉]◡ E ) = [〈((((𝑥 ·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑣) +R
(-1R ·R (((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑢))), ((((𝑦 ·R 𝑧) +R
(𝑥
·R 𝑤)) ·R 𝑣) +R
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑢))〉]◡ E ) |
| 5 | | mulcnsrec 7927 |
. 2
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (((𝑧
·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))) ∈ R ∧ ((𝑤
·R 𝑣) +R (𝑧
·R 𝑢)) ∈ R)) →
([〈𝑥, 𝑦〉]◡ E · [〈((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))), ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))〉]◡ E ) = [〈((𝑥 ·R ((𝑧
·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) +R
(-1R ·R (𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))))), ((𝑦 ·R ((𝑧
·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) +R (𝑥
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))))〉]◡ E ) |
| 6 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑥 ∈ R ∧
𝑧 ∈ R)
→ (𝑥
·R 𝑧) ∈ R) |
| 7 | | m1r 7836 |
. . . . . 6
⊢
-1R ∈ R |
| 8 | | mulclsr 7838 |
. . . . . 6
⊢ ((𝑦 ∈ R ∧
𝑤 ∈ R)
→ (𝑦
·R 𝑤) ∈ R) |
| 9 | | mulclsr 7838 |
. . . . . 6
⊢
((-1R ∈ R ∧ (𝑦
·R 𝑤) ∈ R) →
(-1R ·R (𝑦
·R 𝑤)) ∈ R) |
| 10 | 7, 8, 9 | sylancr 414 |
. . . . 5
⊢ ((𝑦 ∈ R ∧
𝑤 ∈ R)
→ (-1R ·R (𝑦
·R 𝑤)) ∈ R) |
| 11 | | addclsr 7837 |
. . . . 5
⊢ (((𝑥
·R 𝑧) ∈ R ∧
(-1R ·R (𝑦
·R 𝑤)) ∈ R) → ((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ∈ R) |
| 12 | 6, 10, 11 | syl2an 289 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑧 ∈ R)
∧ (𝑦 ∈
R ∧ 𝑤
∈ R)) → ((𝑥 ·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ∈ R) |
| 13 | 12 | an4s 588 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R)) → ((𝑥 ·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ∈ R) |
| 14 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑦 ∈ R ∧
𝑧 ∈ R)
→ (𝑦
·R 𝑧) ∈ R) |
| 15 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑥 ∈ R ∧
𝑤 ∈ R)
→ (𝑥
·R 𝑤) ∈ R) |
| 16 | | addclsr 7837 |
. . . . 5
⊢ (((𝑦
·R 𝑧) ∈ R ∧ (𝑥
·R 𝑤) ∈ R) → ((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ∈ R) |
| 17 | 14, 15, 16 | syl2anr 290 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑤 ∈ R)
∧ (𝑦 ∈
R ∧ 𝑧
∈ R)) → ((𝑦 ·R 𝑧) +R
(𝑥
·R 𝑤)) ∈ R) |
| 18 | 17 | an42s 589 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R)) → ((𝑦 ·R 𝑧) +R
(𝑥
·R 𝑤)) ∈ R) |
| 19 | 13, 18 | jca 306 |
. 2
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R)) → (((𝑥 ·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ∈ R ∧ ((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ∈ R)) |
| 20 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑧 ∈ R ∧
𝑣 ∈ R)
→ (𝑧
·R 𝑣) ∈ R) |
| 21 | | mulclsr 7838 |
. . . . . 6
⊢ ((𝑤 ∈ R ∧
𝑢 ∈ R)
→ (𝑤
·R 𝑢) ∈ R) |
| 22 | | mulclsr 7838 |
. . . . . 6
⊢
((-1R ∈ R ∧ (𝑤
·R 𝑢) ∈ R) →
(-1R ·R (𝑤
·R 𝑢)) ∈ R) |
| 23 | 7, 21, 22 | sylancr 414 |
. . . . 5
⊢ ((𝑤 ∈ R ∧
𝑢 ∈ R)
→ (-1R ·R (𝑤
·R 𝑢)) ∈ R) |
| 24 | | addclsr 7837 |
. . . . 5
⊢ (((𝑧
·R 𝑣) ∈ R ∧
(-1R ·R (𝑤
·R 𝑢)) ∈ R) → ((𝑧
·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))) ∈ R) |
| 25 | 20, 23, 24 | syl2an 289 |
. . . 4
⊢ (((𝑧 ∈ R ∧
𝑣 ∈ R)
∧ (𝑤 ∈
R ∧ 𝑢
∈ R)) → ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))) ∈ R) |
| 26 | 25 | an4s 588 |
. . 3
⊢ (((𝑧 ∈ R ∧
𝑤 ∈ R)
∧ (𝑣 ∈
R ∧ 𝑢
∈ R)) → ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))) ∈ R) |
| 27 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑤 ∈ R ∧
𝑣 ∈ R)
→ (𝑤
·R 𝑣) ∈ R) |
| 28 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑧 ∈ R ∧
𝑢 ∈ R)
→ (𝑧
·R 𝑢) ∈ R) |
| 29 | | addclsr 7837 |
. . . . 5
⊢ (((𝑤
·R 𝑣) ∈ R ∧ (𝑧
·R 𝑢) ∈ R) → ((𝑤
·R 𝑣) +R (𝑧
·R 𝑢)) ∈ R) |
| 30 | 27, 28, 29 | syl2anr 290 |
. . . 4
⊢ (((𝑧 ∈ R ∧
𝑢 ∈ R)
∧ (𝑤 ∈
R ∧ 𝑣
∈ R)) → ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢)) ∈ R) |
| 31 | 30 | an42s 589 |
. . 3
⊢ (((𝑧 ∈ R ∧
𝑤 ∈ R)
∧ (𝑣 ∈
R ∧ 𝑢
∈ R)) → ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢)) ∈ R) |
| 32 | 26, 31 | jca 306 |
. 2
⊢ (((𝑧 ∈ R ∧
𝑤 ∈ R)
∧ (𝑣 ∈
R ∧ 𝑢
∈ R)) → (((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢))) ∈ R ∧ ((𝑤
·R 𝑣) +R (𝑧
·R 𝑢)) ∈ R)) |
| 33 | | simp1l 1023 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
𝑥 ∈
R) |
| 34 | | simp2l 1025 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
𝑧 ∈
R) |
| 35 | | simp3l 1027 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
𝑣 ∈
R) |
| 36 | 34, 35, 20 | syl2anc 411 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑧
·R 𝑣) ∈ R) |
| 37 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑥 ∈ R ∧
(𝑧
·R 𝑣) ∈ R) → (𝑥
·R (𝑧 ·R 𝑣)) ∈
R) |
| 38 | 33, 36, 37 | syl2anc 411 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R (𝑧 ·R 𝑣)) ∈
R) |
| 39 | | simp2r 1026 |
. . . . . . 7
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
𝑤 ∈
R) |
| 40 | | simp3r 1028 |
. . . . . . 7
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
𝑢 ∈
R) |
| 41 | 39, 40, 21 | syl2anc 411 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑤
·R 𝑢) ∈ R) |
| 42 | 7, 41, 22 | sylancr 414 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑤
·R 𝑢)) ∈ R) |
| 43 | | mulclsr 7838 |
. . . . 5
⊢ ((𝑥 ∈ R ∧
(-1R ·R (𝑤
·R 𝑢)) ∈ R) → (𝑥
·R (-1R
·R (𝑤 ·R 𝑢))) ∈
R) |
| 44 | 33, 42, 43 | syl2anc 411 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R (-1R
·R (𝑤 ·R 𝑢))) ∈
R) |
| 45 | | simp1r 1024 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
𝑦 ∈
R) |
| 46 | 39, 35, 27 | syl2anc 411 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑤
·R 𝑣) ∈ R) |
| 47 | | mulclsr 7838 |
. . . . . 6
⊢ ((𝑦 ∈ R ∧
(𝑤
·R 𝑣) ∈ R) → (𝑦
·R (𝑤 ·R 𝑣)) ∈
R) |
| 48 | 45, 46, 47 | syl2anc 411 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R (𝑤 ·R 𝑣)) ∈
R) |
| 49 | | mulclsr 7838 |
. . . . 5
⊢
((-1R ∈ R ∧ (𝑦
·R (𝑤 ·R 𝑣)) ∈ R)
→ (-1R ·R (𝑦
·R (𝑤 ·R 𝑣))) ∈
R) |
| 50 | 7, 48, 49 | sylancr 414 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑦
·R (𝑤 ·R 𝑣))) ∈
R) |
| 51 | | addcomsrg 7839 |
. . . . 5
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R)
→ (𝑓
+R 𝑔) = (𝑔 +R 𝑓)) |
| 52 | 51 | adantl 277 |
. . . 4
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R)) → (𝑓
+R 𝑔) = (𝑔 +R 𝑓)) |
| 53 | | addasssrg 7840 |
. . . . 5
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ((𝑓
+R 𝑔) +R ℎ) = (𝑓 +R (𝑔 +R
ℎ))) |
| 54 | 53 | adantl 277 |
. . . 4
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R ∧ ℎ
∈ R)) → ((𝑓 +R 𝑔) +R
ℎ) = (𝑓 +R (𝑔 +R
ℎ))) |
| 55 | 34, 40, 28 | syl2anc 411 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑧
·R 𝑢) ∈ R) |
| 56 | | mulclsr 7838 |
. . . . . 6
⊢ ((𝑦 ∈ R ∧
(𝑧
·R 𝑢) ∈ R) → (𝑦
·R (𝑧 ·R 𝑢)) ∈
R) |
| 57 | 45, 55, 56 | syl2anc 411 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R (𝑧 ·R 𝑢)) ∈
R) |
| 58 | | mulclsr 7838 |
. . . . 5
⊢
((-1R ∈ R ∧ (𝑦
·R (𝑧 ·R 𝑢)) ∈ R)
→ (-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) ∈
R) |
| 59 | 7, 57, 58 | sylancr 414 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) ∈
R) |
| 60 | | addclsr 7837 |
. . . . 5
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R)
→ (𝑓
+R 𝑔) ∈ R) |
| 61 | 60 | adantl 277 |
. . . 4
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R)) → (𝑓
+R 𝑔) ∈ R) |
| 62 | 38, 44, 50, 52, 54, 59, 61 | caov42d 6114 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑥
·R (𝑧 ·R 𝑣)) +R
(𝑥
·R (-1R
·R (𝑤 ·R 𝑢)))) +R
((-1R ·R (𝑦
·R (𝑤 ·R 𝑣))) +R
(-1R ·R (𝑦
·R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧
·R 𝑣)) +R
(-1R ·R (𝑦
·R (𝑤 ·R 𝑣)))) +R
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(𝑥
·R (-1R
·R (𝑤 ·R 𝑢)))))) |
| 63 | | distrsrg 7843 |
. . . . 5
⊢ ((𝑥 ∈ R ∧
(𝑧
·R 𝑣) ∈ R ∧
(-1R ·R (𝑤
·R 𝑢)) ∈ R) → (𝑥
·R ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) = ((𝑥 ·R (𝑧
·R 𝑣)) +R (𝑥
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 64 | 33, 36, 42, 63 | syl3anc 1249 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) = ((𝑥 ·R (𝑧
·R 𝑣)) +R (𝑥
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 65 | | distrsrg 7843 |
. . . . . . 7
⊢ ((𝑦 ∈ R ∧
(𝑤
·R 𝑣) ∈ R ∧ (𝑧
·R 𝑢) ∈ R) → (𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))) = ((𝑦 ·R (𝑤
·R 𝑣)) +R (𝑦
·R (𝑧 ·R 𝑢)))) |
| 66 | 45, 46, 55, 65 | syl3anc 1249 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))) = ((𝑦 ·R (𝑤
·R 𝑣)) +R (𝑦
·R (𝑧 ·R 𝑢)))) |
| 67 | 66 | oveq2d 5941 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢)))) = (-1R
·R ((𝑦 ·R (𝑤
·R 𝑣)) +R (𝑦
·R (𝑧 ·R 𝑢))))) |
| 68 | 7 | a1i 9 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
-1R ∈ R) |
| 69 | | distrsrg 7843 |
. . . . . 6
⊢
((-1R ∈ R ∧ (𝑦
·R (𝑤 ·R 𝑣)) ∈ R ∧
(𝑦
·R (𝑧 ·R 𝑢)) ∈ R)
→ (-1R ·R ((𝑦
·R (𝑤 ·R 𝑣)) +R
(𝑦
·R (𝑧 ·R 𝑢)))) =
((-1R ·R (𝑦
·R (𝑤 ·R 𝑣))) +R
(-1R ·R (𝑦
·R (𝑧 ·R 𝑢))))) |
| 70 | 68, 48, 57, 69 | syl3anc 1249 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R ((𝑦
·R (𝑤 ·R 𝑣)) +R
(𝑦
·R (𝑧 ·R 𝑢)))) =
((-1R ·R (𝑦
·R (𝑤 ·R 𝑣))) +R
(-1R ·R (𝑦
·R (𝑧 ·R 𝑢))))) |
| 71 | 67, 70 | eqtrd 2229 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢)))) = ((-1R
·R (𝑦 ·R (𝑤
·R 𝑣))) +R
(-1R ·R (𝑦
·R (𝑧 ·R 𝑢))))) |
| 72 | 64, 71 | oveq12d 5943 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((𝑥
·R ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) +R
(-1R ·R (𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))))) = (((𝑥 ·R (𝑧
·R 𝑣)) +R (𝑥
·R (-1R
·R (𝑤 ·R 𝑢)))) +R
((-1R ·R (𝑦
·R (𝑤 ·R 𝑣))) +R
(-1R ·R (𝑦
·R (𝑧 ·R 𝑢)))))) |
| 73 | | mulcomsrg 7841 |
. . . . . . 7
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R)
→ (𝑓
·R 𝑔) = (𝑔 ·R 𝑓)) |
| 74 | 73 | adantl 277 |
. . . . . 6
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R)) → (𝑓
·R 𝑔) = (𝑔 ·R 𝑓)) |
| 75 | | distrsrg 7843 |
. . . . . . . . 9
⊢ ((ℎ ∈ R ∧
𝑓 ∈ R
∧ 𝑔 ∈
R) → (ℎ
·R (𝑓 +R 𝑔)) = ((ℎ ·R 𝑓) +R
(ℎ
·R 𝑔))) |
| 76 | 75 | 3coml 1212 |
. . . . . . . 8
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → (ℎ
·R (𝑓 +R 𝑔)) = ((ℎ ·R 𝑓) +R
(ℎ
·R 𝑔))) |
| 77 | | simp3 1001 |
. . . . . . . . 9
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ℎ
∈ R) |
| 78 | 60 | 3adant3 1019 |
. . . . . . . . 9
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → (𝑓
+R 𝑔) ∈ R) |
| 79 | | mulcomsrg 7841 |
. . . . . . . . 9
⊢ ((ℎ ∈ R ∧
(𝑓
+R 𝑔) ∈ R) → (ℎ
·R (𝑓 +R 𝑔)) = ((𝑓 +R 𝑔)
·R ℎ)) |
| 80 | 77, 78, 79 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → (ℎ
·R (𝑓 +R 𝑔)) = ((𝑓 +R 𝑔)
·R ℎ)) |
| 81 | | simp1 999 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → 𝑓
∈ R) |
| 82 | | mulcomsrg 7841 |
. . . . . . . . . 10
⊢ ((ℎ ∈ R ∧
𝑓 ∈ R)
→ (ℎ
·R 𝑓) = (𝑓 ·R ℎ)) |
| 83 | 77, 81, 82 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → (ℎ
·R 𝑓) = (𝑓 ·R ℎ)) |
| 84 | | simp2 1000 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → 𝑔
∈ R) |
| 85 | | mulcomsrg 7841 |
. . . . . . . . . 10
⊢ ((ℎ ∈ R ∧
𝑔 ∈ R)
→ (ℎ
·R 𝑔) = (𝑔 ·R ℎ)) |
| 86 | 77, 84, 85 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → (ℎ
·R 𝑔) = (𝑔 ·R ℎ)) |
| 87 | 83, 86 | oveq12d 5943 |
. . . . . . . 8
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ((ℎ
·R 𝑓) +R (ℎ
·R 𝑔)) = ((𝑓 ·R ℎ) +R
(𝑔
·R ℎ))) |
| 88 | 76, 80, 87 | 3eqtr3d 2237 |
. . . . . . 7
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ((𝑓
+R 𝑔) ·R ℎ) = ((𝑓 ·R ℎ) +R
(𝑔
·R ℎ))) |
| 89 | 88 | adantl 277 |
. . . . . 6
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R ∧ ℎ
∈ R)) → ((𝑓 +R 𝑔)
·R ℎ) = ((𝑓 ·R ℎ) +R
(𝑔
·R ℎ))) |
| 90 | | mulasssrg 7842 |
. . . . . . 7
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R
∧ ℎ ∈
R) → ((𝑓
·R 𝑔) ·R ℎ) = (𝑓 ·R (𝑔
·R ℎ))) |
| 91 | 90 | adantl 277 |
. . . . . 6
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R ∧ ℎ
∈ R)) → ((𝑓 ·R 𝑔)
·R ℎ) = (𝑓 ·R (𝑔
·R ℎ))) |
| 92 | | mulclsr 7838 |
. . . . . . 7
⊢ ((𝑓 ∈ R ∧
𝑔 ∈ R)
→ (𝑓
·R 𝑔) ∈ R) |
| 93 | 92 | adantl 277 |
. . . . . 6
⊢ ((((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) ∧
(𝑓 ∈ R
∧ 𝑔 ∈
R)) → (𝑓
·R 𝑔) ∈ R) |
| 94 | 45, 39, 8 | syl2anc 411 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R 𝑤) ∈ R) |
| 95 | 74, 89, 91, 93, 33, 68, 34, 94, 35 | caovdilemd 6119 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧
·R 𝑣)) +R
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑣)))) |
| 96 | | mulasssrg 7842 |
. . . . . . . 8
⊢ ((𝑦 ∈ R ∧
𝑤 ∈ R
∧ 𝑣 ∈
R) → ((𝑦
·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤
·R 𝑣))) |
| 97 | 45, 39, 35, 96 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((𝑦
·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤
·R 𝑣))) |
| 98 | 97 | oveq2d 5941 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑣)) =
(-1R ·R (𝑦
·R (𝑤 ·R 𝑣)))) |
| 99 | 98 | oveq2d 5941 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((𝑥
·R (𝑧 ·R 𝑣)) +R
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑣))) = ((𝑥 ·R (𝑧
·R 𝑣)) +R
(-1R ·R (𝑦
·R (𝑤 ·R 𝑣))))) |
| 100 | 95, 99 | eqtrd 2229 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧
·R 𝑣)) +R
(-1R ·R (𝑦
·R (𝑤 ·R 𝑣))))) |
| 101 | 74, 89, 91, 93, 45, 33, 34, 39, 40 | caovdilemd 6119 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑢) = ((𝑦 ·R (𝑧
·R 𝑢)) +R (𝑥
·R (𝑤 ·R 𝑢)))) |
| 102 | 101 | oveq2d 5941 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑢)) =
(-1R ·R ((𝑦
·R (𝑧 ·R 𝑢)) +R
(𝑥
·R (𝑤 ·R 𝑢))))) |
| 103 | 93, 33, 41 | caovcld 6081 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R (𝑤 ·R 𝑢)) ∈
R) |
| 104 | | distrsrg 7843 |
. . . . . 6
⊢
((-1R ∈ R ∧ (𝑦
·R (𝑧 ·R 𝑢)) ∈ R ∧
(𝑥
·R (𝑤 ·R 𝑢)) ∈ R)
→ (-1R ·R ((𝑦
·R (𝑧 ·R 𝑢)) +R
(𝑥
·R (𝑤 ·R 𝑢)))) =
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(-1R ·R (𝑥
·R (𝑤 ·R 𝑢))))) |
| 105 | 68, 57, 103, 104 | syl3anc 1249 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R ((𝑦
·R (𝑧 ·R 𝑢)) +R
(𝑥
·R (𝑤 ·R 𝑢)))) =
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(-1R ·R (𝑥
·R (𝑤 ·R 𝑢))))) |
| 106 | 68, 33, 41, 74, 91 | caov12d 6109 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑥
·R (𝑤 ·R 𝑢))) = (𝑥 ·R
(-1R ·R (𝑤
·R 𝑢)))) |
| 107 | 106 | oveq2d 5941 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(-1R ·R (𝑥
·R (𝑤 ·R 𝑢)))) =
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(𝑥
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 108 | 102, 105,
107 | 3eqtrd 2233 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑢)) =
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(𝑥
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 109 | 100, 108 | oveq12d 5943 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑣) +R
(-1R ·R (((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑢))) = (((𝑥 ·R (𝑧
·R 𝑣)) +R
(-1R ·R (𝑦
·R (𝑤 ·R 𝑣)))) +R
((-1R ·R (𝑦
·R (𝑧 ·R 𝑢))) +R
(𝑥
·R (-1R
·R (𝑤 ·R 𝑢)))))) |
| 110 | 62, 72, 109 | 3eqtr4rd 2240 |
. 2
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑣) +R
(-1R ·R (((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑢))) = ((𝑥 ·R ((𝑧
·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) +R
(-1R ·R (𝑦
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢)))))) |
| 111 | 93, 45, 36 | caovcld 6081 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R (𝑧 ·R 𝑣)) ∈
R) |
| 112 | 93, 45, 42 | caovcld 6081 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R (-1R
·R (𝑤 ·R 𝑢))) ∈
R) |
| 113 | 93, 33, 46 | caovcld 6081 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R (𝑤 ·R 𝑣)) ∈
R) |
| 114 | 93, 33, 55 | caovcld 6081 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R (𝑧 ·R 𝑢)) ∈
R) |
| 115 | 111, 112,
113, 52, 54, 114, 61 | caov42d 6114 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑦
·R (𝑧 ·R 𝑣)) +R
(𝑦
·R (-1R
·R (𝑤 ·R 𝑢)))) +R
((𝑥
·R (𝑤 ·R 𝑣)) +R
(𝑥
·R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧
·R 𝑣)) +R (𝑥
·R (𝑤 ·R 𝑣))) +R
((𝑥
·R (𝑧 ·R 𝑢)) +R
(𝑦
·R (-1R
·R (𝑤 ·R 𝑢)))))) |
| 116 | | distrsrg 7843 |
. . . . 5
⊢ ((𝑦 ∈ R ∧
(𝑧
·R 𝑣) ∈ R ∧
(-1R ·R (𝑤
·R 𝑢)) ∈ R) → (𝑦
·R ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) = ((𝑦 ·R (𝑧
·R 𝑣)) +R (𝑦
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 117 | 45, 36, 42, 116 | syl3anc 1249 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑦
·R ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) = ((𝑦 ·R (𝑧
·R 𝑣)) +R (𝑦
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 118 | | distrsrg 7843 |
. . . . 5
⊢ ((𝑥 ∈ R ∧
(𝑤
·R 𝑣) ∈ R ∧ (𝑧
·R 𝑢) ∈ R) → (𝑥
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))) = ((𝑥 ·R (𝑤
·R 𝑣)) +R (𝑥
·R (𝑧 ·R 𝑢)))) |
| 119 | 33, 46, 55, 118 | syl3anc 1249 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(𝑥
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))) = ((𝑥 ·R (𝑤
·R 𝑣)) +R (𝑥
·R (𝑧 ·R 𝑢)))) |
| 120 | 117, 119 | oveq12d 5943 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((𝑦
·R ((𝑧 ·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) +R (𝑥
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢)))) = (((𝑦 ·R (𝑧
·R 𝑣)) +R (𝑦
·R (-1R
·R (𝑤 ·R 𝑢)))) +R
((𝑥
·R (𝑤 ·R 𝑣)) +R
(𝑥
·R (𝑧 ·R 𝑢))))) |
| 121 | 74, 89, 91, 93, 45, 33, 34, 39, 35 | caovdilemd 6119 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑣) = ((𝑦 ·R (𝑧
·R 𝑣)) +R (𝑥
·R (𝑤 ·R 𝑣)))) |
| 122 | 74, 89, 91, 93, 33, 68, 34, 94, 40 | caovdilemd 6119 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧
·R 𝑢)) +R
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑢)))) |
| 123 | | mulasssrg 7842 |
. . . . . . . . 9
⊢ ((𝑦 ∈ R ∧
𝑤 ∈ R
∧ 𝑢 ∈
R) → ((𝑦
·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤
·R 𝑢))) |
| 124 | 45, 39, 40, 123 | syl3anc 1249 |
. . . . . . . 8
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((𝑦
·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤
·R 𝑢))) |
| 125 | 124 | oveq2d 5941 |
. . . . . . 7
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑢)) =
(-1R ·R (𝑦
·R (𝑤 ·R 𝑢)))) |
| 126 | 68, 45, 41, 74, 91 | caov12d 6109 |
. . . . . . 7
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R (𝑦
·R (𝑤 ·R 𝑢))) = (𝑦 ·R
(-1R ·R (𝑤
·R 𝑢)))) |
| 127 | 125, 126 | eqtrd 2229 |
. . . . . 6
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑢)) = (𝑦 ·R
(-1R ·R (𝑤
·R 𝑢)))) |
| 128 | 127 | oveq2d 5941 |
. . . . 5
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((𝑥
·R (𝑧 ·R 𝑢)) +R
(-1R ·R ((𝑦
·R 𝑤) ·R 𝑢))) = ((𝑥 ·R (𝑧
·R 𝑢)) +R (𝑦
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 129 | 122, 128 | eqtrd 2229 |
. . . 4
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧
·R 𝑢)) +R (𝑦
·R (-1R
·R (𝑤 ·R 𝑢))))) |
| 130 | 121, 129 | oveq12d 5943 |
. . 3
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑣) +R
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑢)) = (((𝑦 ·R (𝑧
·R 𝑣)) +R (𝑥
·R (𝑤 ·R 𝑣))) +R
((𝑥
·R (𝑧 ·R 𝑢)) +R
(𝑦
·R (-1R
·R (𝑤 ·R 𝑢)))))) |
| 131 | 115, 120,
130 | 3eqtr4rd 2240 |
. 2
⊢ (((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ (𝑧 ∈
R ∧ 𝑤
∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) →
((((𝑦
·R 𝑧) +R (𝑥
·R 𝑤)) ·R 𝑣) +R
(((𝑥
·R 𝑧) +R
(-1R ·R (𝑦
·R 𝑤))) ·R 𝑢)) = ((𝑦 ·R ((𝑧
·R 𝑣) +R
(-1R ·R (𝑤
·R 𝑢)))) +R (𝑥
·R ((𝑤 ·R 𝑣) +R
(𝑧
·R 𝑢))))) |
| 132 | 1, 2, 3, 4, 5, 19,
32, 110, 131 | ecoviass 6713 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |