ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulass GIF version

Theorem axmulass 7993
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 8035. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem axmulass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7961 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 7963 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 7963 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E )
4 mulcnsrec 7963 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))), ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢))⟩] E )
5 mulcnsrec 7963 . 2 (((𝑥R𝑦R) ∧ (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E ) = [⟨((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))), ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))⟩] E )
6 mulclsr 7874 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
7 m1r 7872 . . . . . 6 -1RR
8 mulclsr 7874 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
9 mulclsr 7874 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
107, 8, 9sylancr 414 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
11 addclsr 7873 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
126, 10, 11syl2an 289 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1312an4s 588 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
14 mulclsr 7874 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
15 mulclsr 7874 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
16 addclsr 7873 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1714, 15, 16syl2anr 290 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1817an42s 589 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1913, 18jca 306 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
20 mulclsr 7874 . . . . 5 ((𝑧R𝑣R) → (𝑧 ·R 𝑣) ∈ R)
21 mulclsr 7874 . . . . . 6 ((𝑤R𝑢R) → (𝑤 ·R 𝑢) ∈ R)
22 mulclsr 7874 . . . . . 6 ((-1RR ∧ (𝑤 ·R 𝑢) ∈ R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
237, 21, 22sylancr 414 . . . . 5 ((𝑤R𝑢R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
24 addclsr 7873 . . . . 5 (((𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2520, 23, 24syl2an 289 . . . 4 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2625an4s 588 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
27 mulclsr 7874 . . . . 5 ((𝑤R𝑣R) → (𝑤 ·R 𝑣) ∈ R)
28 mulclsr 7874 . . . . 5 ((𝑧R𝑢R) → (𝑧 ·R 𝑢) ∈ R)
29 addclsr 7873 . . . . 5 (((𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3027, 28, 29syl2anr 290 . . . 4 (((𝑧R𝑢R) ∧ (𝑤R𝑣R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3130an42s 589 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3226, 31jca 306 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R))
33 simp1l 1024 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑥R)
34 simp2l 1026 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑧R)
35 simp3l 1028 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑣R)
3634, 35, 20syl2anc 411 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑧 ·R 𝑣) ∈ R)
37 mulclsr 7874 . . . . 5 ((𝑥R ∧ (𝑧 ·R 𝑣) ∈ R) → (𝑥 ·R (𝑧 ·R 𝑣)) ∈ R)
3833, 36, 37syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑧 ·R 𝑣)) ∈ R)
39 simp2r 1027 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑤R)
40 simp3r 1029 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑢R)
4139, 40, 21syl2anc 411 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑤 ·R 𝑢) ∈ R)
427, 41, 22sylancr 414 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
43 mulclsr 7874 . . . . 5 ((𝑥R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
4433, 42, 43syl2anc 411 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
45 simp1r 1025 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑦R)
4639, 35, 27syl2anc 411 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑤 ·R 𝑣) ∈ R)
47 mulclsr 7874 . . . . . 6 ((𝑦R ∧ (𝑤 ·R 𝑣) ∈ R) → (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R)
4845, 46, 47syl2anc 411 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R)
49 mulclsr 7874 . . . . 5 ((-1RR ∧ (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R) → (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) ∈ R)
507, 48, 49sylancr 414 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) ∈ R)
51 addcomsrg 7875 . . . . 5 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
5251adantl 277 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
53 addasssrg 7876 . . . . 5 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
5453adantl 277 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
5534, 40, 28syl2anc 411 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑧 ·R 𝑢) ∈ R)
56 mulclsr 7874 . . . . . 6 ((𝑦R ∧ (𝑧 ·R 𝑢) ∈ R) → (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R)
5745, 55, 56syl2anc 411 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R)
58 mulclsr 7874 . . . . 5 ((-1RR ∧ (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R) → (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) ∈ R)
597, 57, 58sylancr 414 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) ∈ R)
60 addclsr 7873 . . . . 5 ((𝑓R𝑔R) → (𝑓 +R 𝑔) ∈ R)
6160adantl 277 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) ∈ R)
6238, 44, 50, 52, 54, 59, 61caov42d 6140 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))))
63 distrsrg 7879 . . . . 5 ((𝑥R ∧ (𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → (𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
6433, 36, 42, 63syl3anc 1250 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
65 distrsrg 7879 . . . . . . 7 ((𝑦R ∧ (𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢))))
6645, 46, 55, 65syl3anc 1250 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢))))
6766oveq2d 5967 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))))
687a1i 9 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → -1RR)
69 distrsrg 7879 . . . . . 6 ((-1RR ∧ (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R ∧ (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R) → (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
7068, 48, 57, 69syl3anc 1250 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
7167, 70eqtrd 2239 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
7264, 71oveq12d 5969 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))))
73 mulcomsrg 7877 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 ·R 𝑔) = (𝑔 ·R 𝑓))
7473adantl 277 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 ·R 𝑔) = (𝑔 ·R 𝑓))
75 distrsrg 7879 . . . . . . . . 9 ((R𝑓R𝑔R) → ( ·R (𝑓 +R 𝑔)) = (( ·R 𝑓) +R ( ·R 𝑔)))
76753coml 1213 . . . . . . . 8 ((𝑓R𝑔RR) → ( ·R (𝑓 +R 𝑔)) = (( ·R 𝑓) +R ( ·R 𝑔)))
77 simp3 1002 . . . . . . . . 9 ((𝑓R𝑔RR) → R)
78603adant3 1020 . . . . . . . . 9 ((𝑓R𝑔RR) → (𝑓 +R 𝑔) ∈ R)
79 mulcomsrg 7877 . . . . . . . . 9 ((R ∧ (𝑓 +R 𝑔) ∈ R) → ( ·R (𝑓 +R 𝑔)) = ((𝑓 +R 𝑔) ·R ))
8077, 78, 79syl2anc 411 . . . . . . . 8 ((𝑓R𝑔RR) → ( ·R (𝑓 +R 𝑔)) = ((𝑓 +R 𝑔) ·R ))
81 simp1 1000 . . . . . . . . . 10 ((𝑓R𝑔RR) → 𝑓R)
82 mulcomsrg 7877 . . . . . . . . . 10 ((R𝑓R) → ( ·R 𝑓) = (𝑓 ·R ))
8377, 81, 82syl2anc 411 . . . . . . . . 9 ((𝑓R𝑔RR) → ( ·R 𝑓) = (𝑓 ·R ))
84 simp2 1001 . . . . . . . . . 10 ((𝑓R𝑔RR) → 𝑔R)
85 mulcomsrg 7877 . . . . . . . . . 10 ((R𝑔R) → ( ·R 𝑔) = (𝑔 ·R ))
8677, 84, 85syl2anc 411 . . . . . . . . 9 ((𝑓R𝑔RR) → ( ·R 𝑔) = (𝑔 ·R ))
8783, 86oveq12d 5969 . . . . . . . 8 ((𝑓R𝑔RR) → (( ·R 𝑓) +R ( ·R 𝑔)) = ((𝑓 ·R ) +R (𝑔 ·R )))
8876, 80, 873eqtr3d 2247 . . . . . . 7 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) ·R ) = ((𝑓 ·R ) +R (𝑔 ·R )))
8988adantl 277 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) ·R ) = ((𝑓 ·R ) +R (𝑔 ·R )))
90 mulasssrg 7878 . . . . . . 7 ((𝑓R𝑔RR) → ((𝑓 ·R 𝑔) ·R ) = (𝑓 ·R (𝑔 ·R )))
9190adantl 277 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 ·R 𝑔) ·R ) = (𝑓 ·R (𝑔 ·R )))
92 mulclsr 7874 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 ·R 𝑔) ∈ R)
9392adantl 277 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 ·R 𝑔) ∈ R)
9445, 39, 8syl2anc 411 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R 𝑤) ∈ R)
9574, 89, 91, 93, 33, 68, 34, 94, 35caovdilemd 6145 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣))))
96 mulasssrg 7878 . . . . . . . 8 ((𝑦R𝑤R𝑣R) → ((𝑦 ·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤 ·R 𝑣)))
9745, 39, 35, 96syl3anc 1250 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤 ·R 𝑣)))
9897oveq2d 5967 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))))
9998oveq2d 5967 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))))
10095, 99eqtrd 2239 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))))
10174, 89, 91, 93, 45, 33, 34, 39, 40caovdilemd 6145 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢) = ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢))))
102101oveq2d 5967 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))))
10393, 33, 41caovcld 6107 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑤 ·R 𝑢)) ∈ R)
104 distrsrg 7879 . . . . . 6 ((-1RR ∧ (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R ∧ (𝑥 ·R (𝑤 ·R 𝑢)) ∈ R) → (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))))
10568, 57, 103, 104syl3anc 1250 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))))
10668, 33, 41, 74, 91caov12d 6135 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢))) = (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
107106oveq2d 5967 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
108102, 105, 1073eqtrd 2243 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
109100, 108oveq12d 5969 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))))
11062, 72, 1093eqtr4rd 2250 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))))
11193, 45, 36caovcld 6107 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑧 ·R 𝑣)) ∈ R)
11293, 45, 42caovcld 6107 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
11393, 33, 46caovcld 6107 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑤 ·R 𝑣)) ∈ R)
11493, 33, 55caovcld 6107 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑧 ·R 𝑢)) ∈ R)
115111, 112, 113, 52, 54, 114, 61caov42d 6140 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))))
116 distrsrg 7879 . . . . 5 ((𝑦R ∧ (𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → (𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
11745, 36, 42, 116syl3anc 1250 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
118 distrsrg 7879 . . . . 5 ((𝑥R ∧ (𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢))))
11933, 46, 55, 118syl3anc 1250 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢))))
120117, 119oveq12d 5969 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))))
12174, 89, 91, 93, 45, 33, 34, 39, 35caovdilemd 6145 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))))
12274, 89, 91, 93, 33, 68, 34, 94, 40caovdilemd 6145 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢))))
123 mulasssrg 7878 . . . . . . . . 9 ((𝑦R𝑤R𝑢R) → ((𝑦 ·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤 ·R 𝑢)))
12445, 39, 40, 123syl3anc 1250 . . . . . . . 8 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤 ·R 𝑢)))
125124oveq2d 5967 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢))))
12668, 45, 41, 74, 91caov12d 6135 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢))) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
127125, 126eqtrd 2239 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
128127oveq2d 5967 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢))) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
129122, 128eqtrd 2239 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
130121, 129oveq12d 5969 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))))
131115, 120, 1303eqtr4rd 2250 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))))
1321, 2, 3, 4, 5, 19, 32, 110, 131ecoviass 6739 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177   E cep 4338  ccnv 4678  (class class class)co 5951  Rcnr 7417  -1Rcm1r 7420   +R cplr 7421   ·R cmr 7422  cc 7930   · cmul 7937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-2o 6510  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473  df-enq0 7544  df-nq0 7545  df-0nq0 7546  df-plq0 7547  df-mq0 7548  df-inp 7586  df-i1p 7587  df-iplp 7588  df-imp 7589  df-enr 7846  df-nr 7847  df-plr 7848  df-mr 7849  df-m1r 7853  df-c 7938  df-mul 7944
This theorem is referenced by:  rereceu  8009  recriota  8010
  Copyright terms: Public domain W3C validator