| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version | ||
| Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7992. Proofs should normally use addass 8062 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7930 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2177 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2177 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2177 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 981 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | caddc 7935 | . . . . 5 class + | |
| 10 | 1, 4, 9 | co 5951 | . . . 4 class (𝐴 + 𝐵) |
| 11 | 10, 6, 9 | co 5951 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
| 12 | 4, 6, 9 | co 5951 | . . . 4 class (𝐵 + 𝐶) |
| 13 | 1, 12, 9 | co 5951 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
| 14 | 11, 13 | wceq 1373 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: addass 8062 |
| Copyright terms: Public domain | W3C validator |