![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version |
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axaddass 7557. Proofs should normally use addass 7622 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7498 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 1448 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 1448 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 1448 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 930 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | caddc 7503 | . . . . 5 class + | |
10 | 1, 4, 9 | co 5706 | . . . 4 class (𝐴 + 𝐵) |
11 | 10, 6, 9 | co 5706 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
12 | 4, 6, 9 | co 5706 | . . . 4 class (𝐵 + 𝐶) |
13 | 1, 12, 9 | co 5706 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
14 | 11, 13 | wceq 1299 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: addass 7622 |
Copyright terms: Public domain | W3C validator |