ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass GIF version

Axiom ax-addass 7597
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axaddass 7557. Proofs should normally use addass 7622 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7498 . . . 4 class
31, 2wcel 1448 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 1448 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 1448 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 930 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 caddc 7503 . . . . 5 class +
101, 4, 9co 5706 . . . 4 class (𝐴 + 𝐵)
1110, 6, 9co 5706 . . 3 class ((𝐴 + 𝐵) + 𝐶)
124, 6, 9co 5706 . . . 4 class (𝐵 + 𝐶)
131, 12, 9co 5706 . . 3 class (𝐴 + (𝐵 + 𝐶))
1411, 13wceq 1299 . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  addass  7622
  Copyright terms: Public domain W3C validator