![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version |
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7873. Proofs should normally use addass 7943 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7811 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2148 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2148 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2148 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 978 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | caddc 7816 | . . . . 5 class + | |
10 | 1, 4, 9 | co 5877 | . . . 4 class (𝐴 + 𝐵) |
11 | 10, 6, 9 | co 5877 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
12 | 4, 6, 9 | co 5877 | . . . 4 class (𝐵 + 𝐶) |
13 | 1, 12, 9 | co 5877 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
14 | 11, 13 | wceq 1353 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: addass 7943 |
Copyright terms: Public domain | W3C validator |