| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version | ||
| Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8067. Proofs should normally use addass 8137 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 8005 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2200 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2200 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2200 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 1002 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | caddc 8010 | . . . . 5 class + | |
| 10 | 1, 4, 9 | co 6007 | . . . 4 class (𝐴 + 𝐵) |
| 11 | 10, 6, 9 | co 6007 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
| 12 | 4, 6, 9 | co 6007 | . . . 4 class (𝐵 + 𝐶) |
| 13 | 1, 12, 9 | co 6007 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
| 14 | 11, 13 | wceq 1395 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: addass 8137 |
| Copyright terms: Public domain | W3C validator |