ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass GIF version

Axiom ax-addass 8109
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8067. Proofs should normally use addass 8137 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 8005 . . . 4 class
31, 2wcel 2200 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2200 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2200 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 1002 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 caddc 8010 . . . . 5 class +
101, 4, 9co 6007 . . . 4 class (𝐴 + 𝐵)
1110, 6, 9co 6007 . . 3 class ((𝐴 + 𝐵) + 𝐶)
124, 6, 9co 6007 . . . 4 class (𝐵 + 𝐶)
131, 12, 9co 6007 . . 3 class (𝐴 + (𝐵 + 𝐶))
1411, 13wceq 1395 . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  addass  8137
  Copyright terms: Public domain W3C validator