Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version |
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7834. Proofs should normally use addass 7904 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7772 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2141 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2141 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2141 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 973 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | caddc 7777 | . . . . 5 class + | |
10 | 1, 4, 9 | co 5853 | . . . 4 class (𝐴 + 𝐵) |
11 | 10, 6, 9 | co 5853 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
12 | 4, 6, 9 | co 5853 | . . . 4 class (𝐵 + 𝐶) |
13 | 1, 12, 9 | co 5853 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
14 | 11, 13 | wceq 1348 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: addass 7904 |
Copyright terms: Public domain | W3C validator |