| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version | ||
| Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7958. Proofs should normally use addass 8028 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7896 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2167 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2167 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2167 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 980 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | caddc 7901 | . . . . 5 class + | |
| 10 | 1, 4, 9 | co 5925 | . . . 4 class (𝐴 + 𝐵) |
| 11 | 10, 6, 9 | co 5925 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
| 12 | 4, 6, 9 | co 5925 | . . . 4 class (𝐵 + 𝐶) |
| 13 | 1, 12, 9 | co 5925 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
| 14 | 11, 13 | wceq 1364 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: addass 8028 |
| Copyright terms: Public domain | W3C validator |