ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass GIF version

Axiom ax-addass 7888
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7846. Proofs should normally use addass 7916 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7784 . . . 4 class
31, 2wcel 2146 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2146 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2146 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 978 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 caddc 7789 . . . . 5 class +
101, 4, 9co 5865 . . . 4 class (𝐴 + 𝐵)
1110, 6, 9co 5865 . . 3 class ((𝐴 + 𝐵) + 𝐶)
124, 6, 9co 5865 . . . 4 class (𝐵 + 𝐶)
131, 12, 9co 5865 . . 3 class (𝐴 + (𝐵 + 𝐶))
1411, 13wceq 1353 . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  addass  7916
  Copyright terms: Public domain W3C validator