| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version | ||
| Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8027. Proofs should normally use addass 8097 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cc 7965 | . . . 4 class ℂ | |
| 3 | 1, 2 | wcel 2180 | . . 3 wff 𝐴 ∈ ℂ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 2180 | . . 3 wff 𝐵 ∈ ℂ |
| 6 | cC | . . . 4 class 𝐶 | |
| 7 | 6, 2 | wcel 2180 | . . 3 wff 𝐶 ∈ ℂ |
| 8 | 3, 5, 7 | w3a 983 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
| 9 | caddc 7970 | . . . . 5 class + | |
| 10 | 1, 4, 9 | co 5974 | . . . 4 class (𝐴 + 𝐵) |
| 11 | 10, 6, 9 | co 5974 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
| 12 | 4, 6, 9 | co 5974 | . . . 4 class (𝐵 + 𝐶) |
| 13 | 1, 12, 9 | co 5974 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
| 14 | 11, 13 | wceq 1375 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
| 15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| This axiom is referenced by: addass 8097 |
| Copyright terms: Public domain | W3C validator |