Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version |
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 7813. Proofs should normally use addass 7883 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 7751 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2136 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2136 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 2136 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 968 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | caddc 7756 | . . . . 5 class + | |
10 | 1, 4, 9 | co 5842 | . . . 4 class (𝐴 + 𝐵) |
11 | 10, 6, 9 | co 5842 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
12 | 4, 6, 9 | co 5842 | . . . 4 class (𝐵 + 𝐶) |
13 | 1, 12, 9 | co 5842 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
14 | 11, 13 | wceq 1343 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: addass 7883 |
Copyright terms: Public domain | W3C validator |