ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass GIF version

Axiom ax-addass 8069
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by Theorem axaddass 8027. Proofs should normally use addass 8097 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 7965 . . . 4 class
31, 2wcel 2180 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2180 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 2180 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 983 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 caddc 7970 . . . . 5 class +
101, 4, 9co 5974 . . . 4 class (𝐴 + 𝐵)
1110, 6, 9co 5974 . . 3 class ((𝐴 + 𝐵) + 𝐶)
124, 6, 9co 5974 . . . 4 class (𝐵 + 𝐶)
131, 12, 9co 5974 . . 3 class (𝐴 + (𝐵 + 𝐶))
1411, 13wceq 1375 . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
This axiom is referenced by:  addass  8097
  Copyright terms: Public domain W3C validator