![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7977, for naming consistency with mulassi 8030. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7977 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 · cmul 7879 |
This theorem was proved from axioms: ax-mulass 7977 |
This theorem is referenced by: mulrid 8018 mulassi 8030 mulassd 8045 mul12 8150 mul32 8151 mul31 8152 mul4 8153 rimul 8606 divassap 8711 cju 8982 div4p1lem1div2 9239 mulbinom2 10730 sqoddm1div8 10767 remim 11007 imval2 11041 clim2divap 11686 prod3fmul 11687 prodmodclem3 11721 absefib 11917 efieq1re 11918 muldvds1 11962 muldvds2 11963 dvdsmulc 11965 dvdstr 11974 oddprmdvds 12495 cncrng 14068 abssinper 15022 2sqlem6 15277 |
Copyright terms: Public domain | W3C validator |