Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7877, for naming consistency with mulassi 7929. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7877 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 · cmul 7779 |
This theorem was proved from axioms: ax-mulass 7877 |
This theorem is referenced by: mulid1 7917 mulassi 7929 mulassd 7943 mul12 8048 mul32 8049 mul31 8050 mul4 8051 rimul 8504 divassap 8607 cju 8877 div4p1lem1div2 9131 mulbinom2 10592 sqoddm1div8 10629 remim 10824 imval2 10858 clim2divap 11503 prod3fmul 11504 prodmodclem3 11538 absefib 11733 efieq1re 11734 muldvds1 11778 muldvds2 11779 dvdsmulc 11781 dvdstr 11790 oddprmdvds 12306 abssinper 13561 2sqlem6 13750 |
Copyright terms: Public domain | W3C validator |