ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulass GIF version

Theorem mulass 8005
Description: Alias for ax-mulass 7977, for naming consistency with mulassi 8030. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
mulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem mulass
StepHypRef Expression
1 ax-mulass 7977 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872   · cmul 7879
This theorem was proved from axioms:  ax-mulass 7977
This theorem is referenced by:  mulrid  8018  mulassi  8030  mulassd  8045  mul12  8150  mul32  8151  mul31  8152  mul4  8153  rimul  8606  divassap  8711  cju  8982  div4p1lem1div2  9239  mulbinom2  10730  sqoddm1div8  10767  remim  11007  imval2  11041  clim2divap  11686  prod3fmul  11687  prodmodclem3  11721  absefib  11917  efieq1re  11918  muldvds1  11962  muldvds2  11963  dvdsmulc  11965  dvdstr  11974  oddprmdvds  12495  cncrng  14068  abssinper  15022  2sqlem6  15277
  Copyright terms: Public domain W3C validator