![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7931, for naming consistency with mulassi 7983. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7931 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 = wceq 1363 ∈ wcel 2159 (class class class)co 5890 ℂcc 7826 · cmul 7833 |
This theorem was proved from axioms: ax-mulass 7931 |
This theorem is referenced by: mulrid 7971 mulassi 7983 mulassd 7998 mul12 8103 mul32 8104 mul31 8105 mul4 8106 rimul 8559 divassap 8664 cju 8935 div4p1lem1div2 9189 mulbinom2 10654 sqoddm1div8 10691 remim 10886 imval2 10920 clim2divap 11565 prod3fmul 11566 prodmodclem3 11600 absefib 11795 efieq1re 11796 muldvds1 11840 muldvds2 11841 dvdsmulc 11843 dvdstr 11852 oddprmdvds 12369 cncrng 13832 abssinper 14650 2sqlem6 14850 |
Copyright terms: Public domain | W3C validator |