![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7448, for naming consistency with mulassi 7497. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7448 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 924 = wceq 1289 ∈ wcel 1438 (class class class)co 5652 ℂcc 7348 · cmul 7355 |
This theorem was proved from axioms: ax-mulass 7448 |
This theorem is referenced by: mulid1 7485 mulassi 7497 mulassd 7511 mul12 7611 mul32 7612 mul31 7613 mul4 7614 rimul 8062 divassap 8157 cju 8421 div4p1lem1div2 8669 mulbinom2 10070 sqoddm1div8 10106 remim 10294 imval2 10328 absefib 11060 efieq1re 11061 muldvds1 11099 muldvds2 11100 dvdsmulc 11102 dvdstr 11111 |
Copyright terms: Public domain | W3C validator |