![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7975, for naming consistency with mulassi 8028. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7975 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 · cmul 7877 |
This theorem was proved from axioms: ax-mulass 7975 |
This theorem is referenced by: mulrid 8016 mulassi 8028 mulassd 8043 mul12 8148 mul32 8149 mul31 8150 mul4 8151 rimul 8604 divassap 8709 cju 8980 div4p1lem1div2 9236 mulbinom2 10727 sqoddm1div8 10764 remim 11004 imval2 11038 clim2divap 11683 prod3fmul 11684 prodmodclem3 11718 absefib 11914 efieq1re 11915 muldvds1 11959 muldvds2 11960 dvdsmulc 11962 dvdstr 11971 oddprmdvds 12492 cncrng 14057 abssinper 14981 2sqlem6 15207 |
Copyright terms: Public domain | W3C validator |