| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulass | GIF version | ||
| Description: Alias for ax-mulass 8010, for naming consistency with mulassi 8063. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 8010 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 · cmul 7912 |
| This theorem was proved from axioms: ax-mulass 8010 |
| This theorem is referenced by: mulrid 8051 mulassi 8063 mulassd 8078 mul12 8183 mul32 8184 mul31 8185 mul4 8186 rimul 8640 divassap 8745 cju 9016 div4p1lem1div2 9273 mulbinom2 10782 sqoddm1div8 10819 remim 11090 imval2 11124 clim2divap 11770 prod3fmul 11771 prodmodclem3 11805 absefib 12001 efieq1re 12002 muldvds1 12046 muldvds2 12047 dvdsmulc 12049 dvdstr 12058 oddprmdvds 12596 cncrng 14249 abssinper 15236 2sqlem6 15515 |
| Copyright terms: Public domain | W3C validator |