| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulass | GIF version | ||
| Description: Alias for ax-mulass 8027, for naming consistency with mulassi 8080. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-mulass 8027 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 · cmul 7929 |
| This theorem was proved from axioms: ax-mulass 8027 |
| This theorem is referenced by: mulrid 8068 mulassi 8080 mulassd 8095 mul12 8200 mul32 8201 mul31 8202 mul4 8203 rimul 8657 divassap 8762 cju 9033 div4p1lem1div2 9290 mulbinom2 10799 sqoddm1div8 10836 remim 11113 imval2 11147 clim2divap 11793 prod3fmul 11794 prodmodclem3 11828 absefib 12024 efieq1re 12025 muldvds1 12069 muldvds2 12070 dvdsmulc 12072 dvdstr 12081 oddprmdvds 12619 cncrng 14273 abssinper 15260 2sqlem6 15539 |
| Copyright terms: Public domain | W3C validator |