Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7856, for naming consistency with mulassi 7908. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7856 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 · cmul 7758 |
This theorem was proved from axioms: ax-mulass 7856 |
This theorem is referenced by: mulid1 7896 mulassi 7908 mulassd 7922 mul12 8027 mul32 8028 mul31 8029 mul4 8030 rimul 8483 divassap 8586 cju 8856 div4p1lem1div2 9110 mulbinom2 10571 sqoddm1div8 10608 remim 10802 imval2 10836 clim2divap 11481 prod3fmul 11482 prodmodclem3 11516 absefib 11711 efieq1re 11712 muldvds1 11756 muldvds2 11757 dvdsmulc 11759 dvdstr 11768 oddprmdvds 12284 abssinper 13407 2sqlem6 13596 |
Copyright terms: Public domain | W3C validator |