Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulass | GIF version |
Description: Alias for ax-mulass 7818, for naming consistency with mulassi 7870. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
mulass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-mulass 7818 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 (class class class)co 5818 ℂcc 7713 · cmul 7720 |
This theorem was proved from axioms: ax-mulass 7818 |
This theorem is referenced by: mulid1 7858 mulassi 7870 mulassd 7884 mul12 7987 mul32 7988 mul31 7989 mul4 7990 rimul 8443 divassap 8546 cju 8815 div4p1lem1div2 9069 mulbinom2 10516 sqoddm1div8 10553 remim 10742 imval2 10776 clim2divap 11419 prod3fmul 11420 prodmodclem3 11454 absefib 11649 efieq1re 11650 muldvds1 11693 muldvds2 11694 dvdsmulc 11696 dvdstr 11705 abssinper 13127 |
Copyright terms: Public domain | W3C validator |