Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdbi GIF version

Theorem bdbi 12826
Description: A biconditional between two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdbi.1 BOUNDED 𝜑
bdbi.2 BOUNDED 𝜓
Assertion
Ref Expression
bdbi BOUNDED (𝜑𝜓)

Proof of Theorem bdbi
StepHypRef Expression
1 bdbi.1 . . . 4 BOUNDED 𝜑
2 bdbi.2 . . . 4 BOUNDED 𝜓
31, 2ax-bdim 12814 . . 3 BOUNDED (𝜑𝜓)
42, 1ax-bdim 12814 . . 3 BOUNDED (𝜓𝜑)
53, 4ax-bdan 12815 . 2 BOUNDED ((𝜑𝜓) ∧ (𝜓𝜑))
6 dfbi2 383 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
75, 6bd0r 12825 1 BOUNDED (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  BOUNDED wbd 12812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 12813  ax-bdim 12814  ax-bdan 12815
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator