| Intuitionistic Logic Explorer Theorem List (p. 147 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | psrbaglesuppg 14601* | The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘𝑟 ≤ 𝐹)) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) | ||
| Theorem | psrbagfi 14602* | A finite index set gives a simpler expression for finite bags. (Contributed by Jim Kingdon, 23-Nov-2025.) |
| ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 = (ℕ0 ↑𝑚 𝐼)) | ||
| Theorem | psrbasg 14603* | The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) | ||
| Theorem | psrelbas 14604* | An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
| Theorem | psrelbasfi 14605 | Simpler form of psrelbas 14604 when the index set is finite. (Contributed by Jim Kingdon, 27-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:(ℕ0 ↑𝑚 𝐼)⟶𝐾) | ||
| Theorem | psrelbasfun 14606 | An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝑋 ∈ 𝐵 → Fun 𝑋) | ||
| Theorem | psrplusgg 14607 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ✚ = ( ∘𝑓 + ↾ (𝐵 × 𝐵))) | ||
| Theorem | psradd 14608 | The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
| Theorem | psraddcl 14609 | Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Mgm) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | psr0cl 14610* | The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) | ||
| Theorem | psr0lid 14611* | The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) | ||
| Theorem | psrnegcl 14612* | The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) | ||
| Theorem | psrlinv 14613* | The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) | ||
| Theorem | psrgrp 14614 | The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) | ||
| Theorem | psr0 14615* | The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) | ||
| Theorem | psrneg 14616* | The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (invg‘𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) | ||
| Theorem | psr1clfi 14617* | The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝑈 ∈ 𝐵) | ||
| Theorem | reldmmpl 14618 | The multivariate polynomial constructor is a proper binary operator. (Contributed by Mario Carneiro, 21-Mar-2015.) |
| ⊢ Rel dom mPoly | ||
| Theorem | mplvalcoe 14619* | Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s 𝑈)) | ||
| Theorem | mplbascoe 14620* | Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑈 = {𝑓 ∈ 𝐵 ∣ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑓‘𝑏) = 0 )}) | ||
| Theorem | mplelbascoe 14621* | Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) (Revised by Jim Kingdon, 4-Nov-2025.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑎 ∈ (ℕ0 ↑𝑚 𝐼)∀𝑏 ∈ (ℕ0 ↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = 0 )))) | ||
| Theorem | fnmpl 14622 | mPoly has universal domain. (Contributed by Jim Kingdon, 5-Nov-2025.) |
| ⊢ mPoly Fn (V × V) | ||
| Theorem | mplrcl 14623 | Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝐼 ∈ V) | ||
| Theorem | mplval2g 14624 | Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑃 = (𝑆 ↾s 𝑈)) | ||
| Theorem | mplbasss 14625 | The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
| Theorem | mplelf 14626* | A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
| Theorem | mplsubgfilemm 14627* | Lemma for mplsubgfi 14630. There exists a polynomial. (Contributed by Jim Kingdon, 21-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → ∃𝑗 𝑗 ∈ 𝑈) | ||
| Theorem | mplsubgfilemcl 14628 | Lemma for mplsubgfi 14630. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) | ||
| Theorem | mplsubgfileminv 14629 | Lemma for mplsubgfi 14630. The additive inverse of a polynomial is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ 𝑁 = (invg‘𝑆) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑈) | ||
| Theorem | mplsubgfi 14630 | The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
| ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | ||
| Theorem | mpl0fi 14631* | The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 0 = (𝑥 ∈ (ℕ0 ↑𝑚 𝐼) ↦ 𝑂)) | ||
| Theorem | mplplusgg 14632 | Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ + = (+g‘𝑌) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → + = (+g‘𝑆)) | ||
| Theorem | mpladd 14633 | The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘𝑓 + 𝑌)) | ||
| Theorem | mplnegfi 14634 | The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝑀 = (invg‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) | ||
| Theorem | mplgrpfi 14635 | The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| ⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) | ||
A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set. | ||
| Syntax | ctop 14636 | Syntax for the class of topologies. |
| class Top | ||
| Definition | df-top 14637* |
Define the class of topologies. It is a proper class. See istopg 14638 and
istopfin 14639 for the corresponding characterizations,
using respectively
binary intersections like in this definition and nonempty finite
intersections.
The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241. (Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.) |
| ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} | ||
| Theorem | istopg 14638* |
Express the predicate "𝐽 is a topology". See istopfin 14639 for
another characterization using nonempty finite intersections instead of
binary intersections.
Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use 𝑇 to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ (𝐽 ∈ 𝐴 → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | ||
| Theorem | istopfin 14639* | Express the predicate "𝐽 is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14638. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.) |
| ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥((𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐽))) | ||
| Theorem | uniopn 14640 | The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | ||
| Theorem | iunopn 14641* | The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | ||
| Theorem | inopn 14642 | The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
| Theorem | fiinopn 14643 | The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
| ⊢ (𝐽 ∈ Top → ((𝐴 ⊆ 𝐽 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → ∩ 𝐴 ∈ 𝐽)) | ||
| Theorem | unopn 14644 | The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) | ||
| Theorem | 0opn 14645 | The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.) |
| ⊢ (𝐽 ∈ Top → ∅ ∈ 𝐽) | ||
| Theorem | 0ntop 14646 | The empty set is not a topology. (Contributed by FL, 1-Jun-2008.) |
| ⊢ ¬ ∅ ∈ Top | ||
| Theorem | topopn 14647 | The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | ||
| Theorem | eltopss 14648 | A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Syntax | ctopon 14649 | Syntax for the function of topologies on sets. |
| class TopOn | ||
| Definition | df-topon 14650* | Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
| ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) | ||
| Theorem | funtopon 14651 | The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ Fun TopOn | ||
| Theorem | istopon 14652 | Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) ↔ (𝐽 ∈ Top ∧ 𝐵 = ∪ 𝐽)) | ||
| Theorem | topontop 14653 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | ||
| Theorem | toponuni 14654 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | ||
| Theorem | topontopi 14655 | A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐽 ∈ Top | ||
| Theorem | toponunii 14656 | The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐽 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐵 = ∪ 𝐽 | ||
| Theorem | toptopon 14657 | Alternative definition of Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | ||
| Theorem | toptopon2 14658 | A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | topontopon 14659 | A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ (TopOn‘∪ 𝐽)) | ||
| Theorem | toponrestid 14660 | Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.) |
| ⊢ 𝐴 ∈ (TopOn‘𝐵) ⇒ ⊢ 𝐴 = (𝐴 ↾t 𝐵) | ||
| Theorem | toponsspwpwg 14661 | The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (TopOn‘𝐴) ⊆ 𝒫 𝒫 𝐴) | ||
| Theorem | dmtopon 14662 | The domain of TopOn is V. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ dom TopOn = V | ||
| Theorem | fntopon 14663 | The class TopOn is a function with domain V. (Contributed by BJ, 29-Apr-2021.) |
| ⊢ TopOn Fn V | ||
| Theorem | toponmax 14664 | The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 ∈ 𝐽) | ||
| Theorem | toponss 14665 | A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) | ||
| Theorem | toponcom 14666 | If 𝐾 is a topology on the base set of topology 𝐽, then 𝐽 is a topology on the base of 𝐾. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ (TopOn‘∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐾)) | ||
| Theorem | toponcomb 14667 | Biconditional form of toponcom 14666. (Contributed by BJ, 5-Dec-2021.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∈ (TopOn‘∪ 𝐾) ↔ 𝐾 ∈ (TopOn‘∪ 𝐽))) | ||
| Theorem | topgele 14668 | The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ({∅, 𝑋} ⊆ 𝐽 ∧ 𝐽 ⊆ 𝒫 𝑋)) | ||
| Syntax | ctps 14669 | Syntax for the class of topological spaces. |
| class TopSp | ||
| Definition | df-topsp 14670 | Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.) |
| ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} | ||
| Theorem | istps 14671 | Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐴)) | ||
| Theorem | istps2 14672 | Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) | ||
| Theorem | tpsuni 14673 | The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) | ||
| Theorem | tpstop 14674 | The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐽 = (TopOpen‘𝐾) ⇒ ⊢ (𝐾 ∈ TopSp → 𝐽 ∈ Top) | ||
| Theorem | tpspropd 14675 | A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) ⇒ ⊢ (𝜑 → (𝐾 ∈ TopSp ↔ 𝐿 ∈ TopSp)) | ||
| Theorem | topontopn 14676 | Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐽 = (TopOpen‘𝐾)) | ||
| Theorem | tsettps 14677 | If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐴 = (Base‘𝐾) & ⊢ 𝐽 = (TopSet‘𝐾) ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | istpsi 14678 | Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
| ⊢ (Base‘𝐾) = 𝐴 & ⊢ (TopOpen‘𝐾) = 𝐽 & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Theorem | eltpsg 14679 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} ⇒ ⊢ (𝐽 ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) | ||
| Theorem | eltpsi 14680 | Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ 𝐴 = ∪ 𝐽 & ⊢ 𝐽 ∈ Top ⇒ ⊢ 𝐾 ∈ TopSp | ||
| Syntax | ctb 14681 | Syntax for the class of topological bases. |
| class TopBases | ||
| Definition | df-bases 14682* | Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 14684). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.) |
| ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} | ||
| Theorem | isbasisg 14683* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ⊆ ∪ (𝐵 ∩ 𝒫 (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis2g 14684* | Express the predicate "the set 𝐵 is a basis for a topology". (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦)))) | ||
| Theorem | isbasis3g 14685* | Express the predicate "the set 𝐵 is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (𝐵 ∈ 𝐶 → (𝐵 ∈ TopBases ↔ (∀𝑥 ∈ 𝐵 𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ ∪ 𝐵∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ (𝑥 ∩ 𝑦)∃𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ (𝑥 ∩ 𝑦))))) | ||
| Theorem | basis1 14686 | Property of a basis. (Contributed by NM, 16-Jul-2006.) |
| ⊢ ((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐶 ∩ 𝐷) ⊆ ∪ (𝐵 ∩ 𝒫 (𝐶 ∩ 𝐷))) | ||
| Theorem | basis2 14687* | Property of a basis. (Contributed by NM, 17-Jul-2006.) |
| ⊢ (((𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵) ∧ (𝐷 ∈ 𝐵 ∧ 𝐴 ∈ (𝐶 ∩ 𝐷))) → ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ (𝐶 ∩ 𝐷))) | ||
| Theorem | fiinbas 14688* | If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝐵 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ∩ 𝑦) ∈ 𝐵) → 𝐵 ∈ TopBases) | ||
| Theorem | baspartn 14689* | A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) | ||
| Theorem | tgval2 14690* | Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14703) that (topGen‘𝐵) is indeed a topology (on ∪ 𝐵, see unitg 14701). See also tgval 13261 and tgval3 14697. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ (𝑥 ⊆ ∪ 𝐵 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))}) | ||
| Theorem | eltg 14691 | Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ 𝐴 ⊆ ∪ (𝐵 ∩ 𝒫 𝐴))) | ||
| Theorem | eltg2 14692* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | ||
| Theorem | eltg2b 14693* | Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) | ||
| Theorem | eltg4i 14694 | An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 = ∪ (𝐵 ∩ 𝒫 𝐴)) | ||
| Theorem | eltg3i 14695 | The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → ∪ 𝐴 ∈ (topGen‘𝐵)) | ||
| Theorem | eltg3 14696* | Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 = ∪ 𝑥))) | ||
| Theorem | tgval3 14697* | Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 13261 and tgval2 14690. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)}) | ||
| Theorem | tg1 14698 | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐴 ⊆ ∪ 𝐵) | ||
| Theorem | tg2 14699* | Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
| ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | ||
| Theorem | bastg 14700 | A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |