Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 15579
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 15578) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 132 . 2 (𝜑𝜓)
41, 3bd0 15578 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 15566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 15567
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bdbi  15580  bdstab  15581  bddc  15582  bd3or  15583  bd3an  15584  bdfal  15587  bdxor  15590  bj-bdcel  15591  bdab  15592  bdcdeq  15593  bdne  15607  bdnel  15608  bdreu  15609  bdrmo  15610  bdsbcALT  15613  bdss  15618  bdeq0  15621  bdvsn  15628  bdop  15629  bdeqsuc  15635  bj-bdind  15684
  Copyright terms: Public domain W3C validator