Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 15835
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 15834) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 132 . 2 (𝜑𝜓)
41, 3bd0 15834 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 15822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 15823
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bdbi  15836  bdstab  15837  bddc  15838  bd3or  15839  bd3an  15840  bdfal  15843  bdxor  15846  bj-bdcel  15847  bdab  15848  bdcdeq  15849  bdne  15863  bdnel  15864  bdreu  15865  bdrmo  15866  bdsbcALT  15869  bdss  15874  bdeq0  15877  bdvsn  15884  bdop  15885  bdeqsuc  15891  bj-bdind  15940
  Copyright terms: Public domain W3C validator