Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 15387
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 15386) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 132 . 2 (𝜑𝜓)
41, 3bd0 15386 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 15374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 15375
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bdbi  15388  bdstab  15389  bddc  15390  bd3or  15391  bd3an  15392  bdfal  15395  bdxor  15398  bj-bdcel  15399  bdab  15400  bdcdeq  15401  bdne  15415  bdnel  15416  bdreu  15417  bdrmo  15418  bdsbcALT  15421  bdss  15426  bdeq0  15429  bdvsn  15436  bdop  15437  bdeqsuc  15443  bj-bdind  15492
  Copyright terms: Public domain W3C validator