Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 14580
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 14579) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 132 . 2 (𝜑𝜓)
41, 3bd0 14579 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 14567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 14568
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bdbi  14581  bdstab  14582  bddc  14583  bd3or  14584  bd3an  14585  bdfal  14588  bdxor  14591  bj-bdcel  14592  bdab  14593  bdcdeq  14594  bdne  14608  bdnel  14609  bdreu  14610  bdrmo  14611  bdsbcALT  14614  bdss  14619  bdeq0  14622  bdvsn  14629  bdop  14630  bdeqsuc  14636  bj-bdind  14685
  Copyright terms: Public domain W3C validator