Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 14547
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 14546) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 132 . 2 (𝜑𝜓)
41, 3bd0 14546 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 14534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 14535
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bdbi  14548  bdstab  14549  bddc  14550  bd3or  14551  bd3an  14552  bdfal  14555  bdxor  14558  bj-bdcel  14559  bdab  14560  bdcdeq  14561  bdne  14575  bdnel  14576  bdreu  14577  bdrmo  14578  bdsbcALT  14581  bdss  14586  bdeq0  14589  bdvsn  14596  bdop  14597  bdeqsuc  14603  bj-bdind  14652
  Copyright terms: Public domain W3C validator