Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 16098
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 16097) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 132 . 2 (𝜑𝜓)
41, 3bd0 16097 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 105  BOUNDED wbd 16085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 16086
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bdbi  16099  bdstab  16100  bddc  16101  bd3or  16102  bd3an  16103  bdfal  16106  bdxor  16109  bj-bdcel  16110  bdab  16111  bdcdeq  16112  bdne  16126  bdnel  16127  bdreu  16128  bdrmo  16129  bdsbcALT  16132  bdss  16137  bdeq0  16140  bdvsn  16147  bdop  16148  bdeqsuc  16154  bj-bdind  16203
  Copyright terms: Public domain W3C validator