Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 13782
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 13781) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 131 . 2 (𝜑𝜓)
41, 3bd0 13781 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 104  BOUNDED wbd 13769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13770
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bdbi  13783  bdstab  13784  bddc  13785  bd3or  13786  bd3an  13787  bdfal  13790  bdxor  13793  bj-bdcel  13794  bdab  13795  bdcdeq  13796  bdne  13810  bdnel  13811  bdreu  13812  bdrmo  13813  bdsbcALT  13816  bdss  13821  bdeq0  13824  bdvsn  13831  bdop  13832  bdeqsuc  13838  bj-bdind  13887
  Copyright terms: Public domain W3C validator