Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bd0r GIF version

Theorem bd0r 13707
Description: A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 13706) biconditional in the hypothesis, to work better with definitions (𝜓 is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bd0r.min BOUNDED 𝜑
bd0r.maj (𝜓𝜑)
Assertion
Ref Expression
bd0r BOUNDED 𝜓

Proof of Theorem bd0r
StepHypRef Expression
1 bd0r.min . 2 BOUNDED 𝜑
2 bd0r.maj . . 3 (𝜓𝜑)
32bicomi 131 . 2 (𝜑𝜓)
41, 3bd0 13706 1 BOUNDED 𝜓
Colors of variables: wff set class
Syntax hints:  wb 104  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13695
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  bdbi  13708  bdstab  13709  bddc  13710  bd3or  13711  bd3an  13712  bdfal  13715  bdxor  13718  bj-bdcel  13719  bdab  13720  bdcdeq  13721  bdne  13735  bdnel  13736  bdreu  13737  bdrmo  13738  bdsbcALT  13741  bdss  13746  bdeq0  13749  bdvsn  13756  bdop  13757  bdeqsuc  13763  bj-bdind  13812
  Copyright terms: Public domain W3C validator