ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 GIF version

Theorem dfbi2 388
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
dfbi2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 117 . . 3 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
21simpli 111 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
31simpri 113 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓))
42, 3impbii 126 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm4.71  389  pm5.17dc  909  dcbi  942  orbididc  959  ifpdfbidc  991  trubifal  1458  albiim  1533  hbbi  1594  hbbid  1621  nfbid  1634  spsbbi  1890  sbbi  2010  cleqh  2329  ralbiim  2665  reu8  2999  sseq2  3248  soeq2  4406  fun11  5387  dffo3  5781  isnsg2  13735  bdbi  16147
  Copyright terms: Public domain W3C validator