| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfbi2 | GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | 
| 3 | 1 | simpri 113 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | 
| 4 | 2, 3 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm4.71 389 pm5.17dc 905 dcbi 938 orbididc 955 trubifal 1427 albiim 1501 hbbi 1562 hbbid 1589 nfbid 1602 spsbbi 1858 sbbi 1978 cleqh 2296 ralbiim 2631 reu8 2960 sseq2 3207 soeq2 4351 fun11 5325 dffo3 5709 isnsg2 13333 bdbi 15472 | 
| Copyright terms: Public domain | W3C validator |