| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfbi2 | GIF version | ||
| Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfbi2 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 117 | . . 3 ⊢ (((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) ∧ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | 1 | simpli 111 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | 1 | simpri 113 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) |
| 4 | 2, 3 | impbii 126 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.71 389 pm5.17dc 905 dcbi 938 orbididc 955 trubifal 1435 albiim 1509 hbbi 1570 hbbid 1597 nfbid 1610 spsbbi 1866 sbbi 1986 cleqh 2304 ralbiim 2639 reu8 2968 sseq2 3216 soeq2 4361 fun11 5335 dffo3 5721 isnsg2 13457 bdbi 15626 |
| Copyright terms: Public domain | W3C validator |