ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfbi2 GIF version

Theorem dfbi2 386
Description: A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
dfbi2 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))

Proof of Theorem dfbi2
StepHypRef Expression
1 df-bi 116 . . 3 (((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))
21simpli 110 . 2 ((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑)))
31simpri 112 . 2 (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓))
42, 3impbii 125 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.71  387  pm5.17dc  899  dcbi  931  orbididc  948  trubifal  1411  albiim  1480  hbbi  1541  hbbid  1568  nfbid  1581  spsbbi  1837  sbbi  1952  cleqh  2270  ralbiim  2604  reu8  2926  sseq2  3171  soeq2  4301  fun11  5265  dffo3  5643  bdbi  13861
  Copyright terms: Public domain W3C validator