Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdbi Unicode version

Theorem bdbi 13668
Description: A biconditional between two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdbi.1  |- BOUNDED  ph
bdbi.2  |- BOUNDED  ps
Assertion
Ref Expression
bdbi  |- BOUNDED  ( ph  <->  ps )

Proof of Theorem bdbi
StepHypRef Expression
1 bdbi.1 . . . 4  |- BOUNDED  ph
2 bdbi.2 . . . 4  |- BOUNDED  ps
31, 2ax-bdim 13656 . . 3  |- BOUNDED  ( ph  ->  ps )
42, 1ax-bdim 13656 . . 3  |- BOUNDED  ( ps  ->  ph )
53, 4ax-bdan 13657 . 2  |- BOUNDED  ( ( ph  ->  ps )  /\  ( ps 
->  ph ) )
6 dfbi2 386 . 2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
75, 6bd0r 13667 1  |- BOUNDED  ( ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13655  ax-bdim 13656  ax-bdan 13657
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator