Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bddc GIF version

Theorem bddc 13374
Description: Decidability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdstab.1 BOUNDED 𝜑
Assertion
Ref Expression
bddc BOUNDED DECID 𝜑

Proof of Theorem bddc
StepHypRef Expression
1 bdstab.1 . . 3 BOUNDED 𝜑
21ax-bdn 13363 . . 3 BOUNDED ¬ 𝜑
31, 2ax-bdor 13362 . 2 BOUNDED (𝜑 ∨ ¬ 𝜑)
4 df-dc 821 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
53, 4bd0r 13371 1 BOUNDED DECID 𝜑
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wo 698  DECID wdc 820  BOUNDED wbd 13358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-bd0 13359  ax-bdor 13362  ax-bdn 13363
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator