Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bddc Unicode version

Theorem bddc 14768
Description: Decidability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdstab.1  |- BOUNDED  ph
Assertion
Ref Expression
bddc  |- BOUNDED DECID  ph

Proof of Theorem bddc
StepHypRef Expression
1 bdstab.1 . . 3  |- BOUNDED  ph
21ax-bdn 14757 . . 3  |- BOUNDED  -.  ph
31, 2ax-bdor 14756 . 2  |- BOUNDED  ( ph  \/  -.  ph )
4 df-dc 835 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
53, 4bd0r 14765 1  |- BOUNDED DECID  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    \/ wo 708  DECID wdc 834  BOUNDED wbd 14752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-bd0 14753  ax-bdor 14756  ax-bdn 14757
This theorem depends on definitions:  df-bi 117  df-dc 835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator