Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibif | GIF version |
Description: Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.) |
Ref | Expression |
---|---|
bibif | ⊢ (¬ 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbn2 687 | . 2 ⊢ (¬ 𝜓 → (¬ 𝜑 ↔ (𝜓 ↔ 𝜑))) | |
2 | bicom 139 | . 2 ⊢ ((𝜓 ↔ 𝜑) ↔ (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | bitr2di 196 | 1 ⊢ (¬ 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nbn 689 |
Copyright terms: Public domain | W3C validator |