| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nbn2 | GIF version | ||
| Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| nbn2 | ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21im 697 | . 2 ⊢ (¬ 𝜑 → (¬ 𝜓 → (𝜑 ↔ 𝜓))) | |
| 2 | biimpr 130 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 3 | mtt 686 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) | |
| 4 | 2, 3 | imbitrrid 156 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ↔ 𝜓) → ¬ 𝜓)) |
| 5 | 1, 4 | impbid 129 | 1 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bibif 699 pm5.18dc 884 biassdc 1406 |
| Copyright terms: Public domain | W3C validator |